|
Brazas, M. L., & Shimizu, T. (2002). Significance of visual cues in choice behavior in the female zebra finch (Taeniopygia guttata castanotis). Anim. Cogn., 5(2), 91–95.
Abstract: Female zebra finches show a preference for male zebra finches over heterospecific males based solely on the auditory cues of males, such as songs. The present study was designed to investigate whether females show a similar preference for male zebra finches based solely on visual cues. Using a Y-maze apparatus, social preference of female zebra finches was studied between male zebra finches and male Bengalese finches in three experiments. In experiment 1, where female zebra finches could see and hear live male zebra finches and male Bengalese finches, the females preferred to associate with the male zebra finches. In experiment 2, using a sound-attenuated experimental apparatus, subjects could see, but not hear, male zebra finches and male Bengalese finches. The subjects did not show a significant preference for associating with zebra finches. In experiment 3, as in experiment 2, females could see live male zebra finches and male Bengalese finches in the sound-attenuated chambers. However, in experiment 3, the subjects also heard prerecorded auditory cues (i.e., songs and calls) of male zebra finches, which were presented simultaneously in both arms of the maze. Although the females could not use the auditory cues to identify the location of the male zebra finches, they preferred to associate with the male zebra finches rather than the male Bengalese finches. These results suggest that visual cues alone were effective in initiating choice behaviors by females and that auditory cues facilitate such visually based choice behaviors.
|
|
|
Dugatkin, L. A., & Godin, J. G. (1992). Reversal of female mate choice by copying in the guppy (Poecilia reticulata). Proc Biol Sci, 249(1325), 179–184.
Abstract: Ever since Fisher (1958) formalized models of sexual selection, female mate choice has been assumed to be a genetically determined trait. Females, however, may also use social cues to select mates. One such cue might be the mate choice of conspecifics. Here we report the first direct evidence that a female's preference for a particular male can in fact be reversed by social cues. In our experiments using the Trinidadian guppy (Poecilia reticulata), this reversal was mediated by mate-copying opportunities, such that a female (the 'focal' female) is given the opportunity to choose between two males, followed by a period in which she observes a second female (the 'model' female) displaying a preference for the male she herself did not prefer initially. When allowed to choose between the same males a second time, compared with control tests, a significant proportion of focal females reversed their mate choice and copied the preference of the model female. These results provide strong evidence for the role of non-genetic factors in sexual selection and underlie the need for new models of sexual selection that explicitly incorporate both genetic and cultural aspects of mate choice.
|
|
|
Feist, J. D., & McCullough, D. R. (1975). Reproduction in feral horses. J Reprod Fertil Suppl, (23), 13–18.
Abstract: A behavioural study of feral horses was conducted on the Pryor Mountain Wild Horse Range in the western United States. All 270 horses on the Range were identified individually. The sex ratio was nearly balanced. Foal to adult female ratio was 43-2:100. Morality was concentrated among foals and old horses. Horses were organized as forty-four harem groups each with a dominant stallion, one to two immature stallions, one to three immature mares, one to three adult mares and their yearling and foal offspring, and 23 bachelor groups of one to eight stallions. Harem groups were quite stable year-round because of dominance and leadership by the stallions and group fidelity by mares and their offsring. Most changes occurred during the breeding season and involved immature females. Defeat of dominant stallions was infrequent. Immature males were tolerated because of their submissive behaviour. Bachelor stallion groups were inherently unstable. Mares came into heat after foaling in May/June, and were mated by harem stallions only.
|
|
|
Fricke, H. W. (1973). Individual partner recognition in fish: field studies on Amphiprion bicinctus. Naturwissenschaften, 60(4), 204–205.
|
|
|
Klingel, H. (1975). Social organization and reproduction in equids. J Reprod Fertil Suppl, (23), 7–11.
Abstract: There are two distinct types of social organization and, accordingly, two types of mating systems in equids. In the horse, Plains zebra and Mountain zebra, the adults live in non-territorial and cohesive one-male groups and in stallion groups. The family stallions have exclusive mating rights which are respected by all others. In Grevy's zebra and in the African and Asiatic wild asses, the stallions are permanently territorial and have exclusive mating rights within their territories. Ecological and evolutionary aspects are discussed.
|
|
|
Saayman, G. S. (1971). Behaviour of the adult males in a troop of free-ranging Chacma baboons (Papio ursinus). Folia Primatol (Basel), 15(1), 36–57.
|
|
|
Turner, J. W. J., & Kirkpatrick, J. F. (1982). Androgens, behaviour and fertility control in feral stallions. J Reprod Fertil Suppl, 32, 79–87.
Abstract: This field study of feral stallions in Montana and Idaho examines and correlates the seasonal pattern of plasma androgens and specific sociosexual behaviour and reports the effect of a long-acting androgenic steroid on this behaviour and on fertility. Plasma testosterone was measured by competitive protein binding assay in samples obtained by jugular venepuncture from captured animals. In samples taken from 34 sexually mature stallions in 6 different months during the year, a definite seasonal pattern in testosterone was present, with a peak in May (3.04 +/- 0.63 ng/ml) and a nadir in December (1.55 +/- 0.34 ng/ml). Values were less than 2.0 ng/ml in non-breeding months and greater than 2.4 ng/ml in breeding months. Behavioural endpoints measured were (1) stallion scent marking in response to elimination by mares (elimination marking), (2) mounting and (3) copulation. The frequencies of each of these endpoints followed closely the seasonal pattern seen for plasma androgens. In the fertility study microcapsulated testosterone propionate (microTP) was administered i.m. to 10 harem stud stallions 3 months before the 1980 breeding season. In these stallions and in 10 control harem studs, the above behavioural endpoints were examined in the 1980 and 1981 breeding seasons, and foal counts were made in 1981. There were no direct inhibitory or stimulatory effects of microTP treatment on any of the behavioural endpoints in either year. In 1981 foals were produced in 87.5% of the control bands and 28.4% of the microTP-treated bands. These results indicate that microencapsulated testosterone propionate can provide effective fertility control in feral horses without causing significant alterations in sociosexual behaviour.
|
|
|
Uehara, T., Yokomizo, H., & Iwasa, Y. (2005). Mate-choice copying as Bayesian decision making. Am Nat, 165(3), 403–410.
Abstract: Mate-choice copying by females has been reported in fishes (e.g., guppies) and lekking birds. Presumably, females assess males' quality using both information from direct observation of males and information acquired by observing other females' choices. Here, we study mathematically the conditions under which mate-choice copying is advantageous on the basis of Bayesian decision theory. A female may observe the mate choice of another female, called the model female, who has performed an optimal choice based on her own judgment. The conditions required for the focal female to choose the same mate as that chosen by the model female should depend on the male's appearance to her, the reliability of her own judgment of male quality, and the reliability of the model females. When three or more females are involved, the optimal mate choice critically depends on whether multiple model females make decisions independently or they themselves copy the choices of others. If two equally reliable females choose different males, the choice of the second female, made knowing the choice of the first, should have a stronger effect on the choice of the third (focal) female. This “last-choice precedence” should be tested experimentally.
|
|