|
Evans, T. A., & Westergaard, G. C. (2004). Discrimination of functionally appropriate and inappropriate throwing tools by captive tufted capuchins (Cebus apella). Anim. Cogn., 7(4), 255–262.
Abstract: A tool-throwing task was used to test whether capuchin monkeys understand the difference between functionally appropriate and functionally inappropriate tools. A group of monkeys was trained to obtain a sticky treat from a container outside their enclosure using a projectile attached to one end of an anchored line. Subsequently, these monkeys were given choice tests between functional and nonfunctional versions of tools used in training. A different feature of the tool was varied between alternatives in each choice test. The monkeys chose to use functional tools significantly more often than nonfunctional tools in early exposures to each choice test. A second experiment tested whether these subjects, as well as a second group of minimally trained participants, could distinguish between functional and nonfunctional tools that appeared different from those used in training. A new set of design features was varied between tools in these choice tests. All participants continued to choose functional tools significantly more often than nonfunctional tools, regardless of their tool-throwing experience or the novel appearance of the tools. These results suggest that capuchin monkeys, like chimpanzees studied in similar experiments, are sensitive to a variety of functionally relevant tool features.
|
|
|
Horowitz, A. C. (2003). Do humans ape? Or do apes human? Imitation and intention in humans (Homo sapiens) and other animals. J Comp Psychol, 117(3), 325–336.
Abstract: A. Whiten, D. M. Custance, J.-C. Gomez, P. Teixidor, and K. A. Bard (1996) tested chimpanzees' (Pan troglodytes) and human children's (Homo sapiens) skills at imitation with a 2-action test on an “artificial fruit.” Chimpanzees imitated to a restricted degree; children were more thoroughly imitative. Such results prompted some to assert that the difference in imitation indicates a difference in the subjects' understanding of the intentions of the demonstrator (M. Tomasello, 1996). In this experiment, 37 adult human subjects were tested with the artificial fruit. Far from being perfect imitators, the adults were less imitative than the children. These results cast doubt on the inference from imitative performance to an ability to understand others' intentions. The results also demonstrate how any test of imitation requires a control group and attention to the level of behavioral analysis.
|
|
|
Sterling, E. J., & Povinelli, D. J. (1999). Tool use, aye-ayes, and sensorimotor intelligence. Folia Primatol (Basel), 70(1), 8–16.
Abstract: Humans, chimpanzees, capuchins and aye-ayes all display an unusually high degree of encephalization and diverse omnivorous extractive foraging. It has been suggested that the high degree of encephalization in aye-ayes may be the result of their diverse, omnivorous extractive foraging behaviors. In combination with certain forms of tool use, omnivorous extractive foraging has been hypothesized to be linked to higher levels of sensorimotor intelligence (stages 5 or 6). Although free-ranging aye-ayes have not been observed to use tools directly in the context of their extractive foraging activities, they have recently been reported to use lianas as tools in a manner that independently suggests that they may possess stage 5 or 6 sensorimotor intelligence. Although other primate species which display diverse, omnivorous extractive foraging have been tested for sensorimotor intelligence, aye-ayes have not. We report a test of captive aye-ayes' comprehension of tool use in a situation designed to simulate natural conditions. The results support the view that aye-ayes do not achieve stage 6 comprehension of tool use, but rather may use trial-and-error learning to develop tool-use behaviors. Other theories for aye-aye encephalization are considered.
|
|