|
Anderson, J. R., Kuroshima, H., Kuwahata, H., & Fujita, K. (2004). Do squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) predict that looking leads to touching? Anim. Cogn., 7(3), 185–192.
Abstract: Squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) were tested using an expectancy violation procedure to assess whether they use an actor's gaze direction, signaled by congruent head and eye orientation, to predict subsequent behavior. The monkeys visually habituated to a repeated sequence in which the actor (a familiar human or a puppet) looked at an object and then picked it up, but they did not react strongly when the actor looked at an object but then picked up another object. Capuchin monkeys' responses in the puppet condition were slightly more suggestive of expectancy. There was no differential responding to congruent versus incongruent look-touch sequences when familiarization trials were omitted. The weak findings contrast with a strongly positive result previously reported for tamarin monkeys. Additional evidence is required before concluding that behavior prediction based on gaze cues typifies primates; other approaches for studying how they process attention cues are indicated.
|
|
|
Barth, J., Reaux, J. E., & Povinelli, D. J. (2005). Chimpanzees' (Pan troglodytes) use of gaze cues in object-choice tasks: different methods yield different results. Anim. Cogn., 8(2), 84–92.
Abstract: To assess the influence of different procedures on chimpanzees' performance in object-choice tasks, five adult chimpanzees were tested using three experimenter-given cues to food location: gazing, glancing, and pointing. These cues were delivered to the subjects in an identical fashion but were deployed within the context of two distinct meta-procedures that have been previously employed with this species with conflicting results. In one procedure, the subjects entered the test unit and approached the experimenter (who had already established the cue) on each trial. In the other procedure, the subjects stayed in the test unit throughout a session, witnessed the hiding procedure, and waited for a delay of 10 s during which the cue was provided. The subjects scored at high levels far exceeding chance in response to the gaze cue only when they approached the experimenter for each trial. They performed at chance levels when they stayed inside the test unit throughout the session. They scored at chance levels on all other cues irrespective of the procedure. These findings imply that (a) chimpanzees can immediately exploit social gaze cues, and (b) previous conflicting findings were likely due to the different meta-procedures that were used.
|
|
|
de Waal, F. B. M. (2003). Darwin's legacy and the study of primate visual communication. Ann N Y Acad Sci, 1000, 7–31.
Abstract: After Charles Darwin's The Expression of the Emotions in Man and Animals, published in 1872, we had to wait 60 years before the theme of animal expressions was picked up by another astute observer. In 1935, Nadezhda Ladygina-Kohts published a detailed comparison of the expressive behavior of a juvenile chimpanzee and of her own child. After Kohts, we had to wait until the 1960s for modern ethological analyses of primate facial and gestural communication. Again, the focus was on the chimpanzee, but ethograms on other primates appeared as well. Our understanding of the range of expressions in other primates is at present far more advanced than that in Darwin's time. A strong social component has been added: instead of focusing on the expressions per se, they are now often classified according to the social situations in which they typically occur. Initially, quantitative analyses were sequential (i.e., concerned with temporal associations between behavior patterns), and they avoided the language of emotions. I will discuss some of this early work, including my own on the communicative repertoire of the bonobo, a close relative of the chimpanzee (and ourselves). I will provide concrete examples to make the point that there is a much richer matrix of contexts possible than the common behavioral categories of aggression, sex, fear, play, and so on. Primate signaling is a form of negotiation, and previous classifications have ignored the specifics of what animals try to achieve with their exchanges. There is also increasing evidence for signal conventionalization in primates, especially the apes, in both captivity and the field. This process results in group-specific or “cultural” communication patterns.
|
|
|
Gácsi, M., Miklósi, Á., Varga, O., Topál, J., & Csányi, V. (2004). Are readers of our face readers of our minds? Dogs (Canis familiaris) show situation-dependent recognition of human's attention. Anim. Cogn., 7(3), 144–153.
Abstract: The ability of animals to use behavioral/facial cues in detection of human attention has been widely investigated. In this test series we studied the ability of dogs to recognize human attention in different experimental situations (ball-fetching game, fetching objects on command, begging from humans). The attentional state of the humans was varied along two variables: (1) facing versus not facing the dog; (2) visible versus non-visible eyes. In the first set of experiments (fetching) the owners were told to take up different body positions (facing or not facing the dog) and to either cover or not cover their eyes with a blindfold. In the second set of experiments (begging) dogs had to choose between two eating humans based on either the visibility of the eyes or direction of the face. Our results show that the efficiency of dogs to discriminate between “attentive” and “inattentive” humans depended on the context of the test, but they could rely on the orientation of the body, the orientation of the head and the visibility of the eyes. With the exception of the fetching-game situation, they brought the object to the front of the human (even if he/she turned his/her back towards the dog), and preferentially begged from the facing (or seeing) human. There were also indications that dogs were sensitive to the visibility of the eyes because they showed increased hesitative behavior when approaching a blindfolded owner, and they also preferred to beg from the person with visible eyes. We conclude that dogs are able to rely on the same set of human facial cues for detection of attention, which form the behavioral basis of understanding attention in humans. Showing the ability of recognizing human attention across different situations dogs proved to be more flexible than chimpanzees investigated in similar circumstances.
|
|
|
Herrmann, E., Melis, A. P., & Tomasello, M. (2006). Apes' use of iconic cues in the object-choice task. Anim. Cogn., 9(2), 118–130.
Abstract: In previous studies great apes have shown little ability to locate hidden food using a physical marker placed by a human directly on the target location. In this study, we hypothesized that the perceptual similarity between an iconic cue and the hidden reward (baited container) would help apes to infer the location of the food. In the first two experiments, we found that if an iconic cue is given in addition to a spatial/indexical cue – e.g., picture or replica of a banana placed on the target location – apes (chimpanzees, bonobos, orangutans, gorillas) as a group performed above chance. However, we also found in two further experiments that when iconic cues were given on their own without spatial/indexical information (iconic cue held up by human with no diagnostic spatial/indexical information), the apes were back to chance performance. Our overall conclusion is that although iconic information helps apes in the process of searching hidden food, the poor performance found in the last two experiments is due to apes' lack of understanding of the informative (cooperative) communicative intention of the experimenter.
|
|
|
Kaminski, J., Call, J., & Tomasello, M. (2004). Body orientation and face orientation: two factors controlling apes' behavior from humans. Anim. Cogn., 7(4), 216–223.
Abstract: A number of animal species have evolved the cognitive ability to detect when they are being watched by other individuals. Precisely what kind of information they use to make this determination is unknown. There is particular controversy in the case of the great apes because different studies report conflicting results. In experiment 1, we presented chimpanzees, orangutans, and bonobos with a situation in which they had to request food from a human observer who was in one of various attentional states. She either stared at the ape, faced the ape with her eyes closed, sat with her back towards the ape, or left the room. In experiment 2, we systematically crossed the observer's body and face orientation so that the observer could have her body and/or face oriented either towards or away from the subject. Results indicated that apes produced more behaviors when they were being watched. They did this not only on the basis of whether they could see the experimenter as a whole, but they were sensitive to her body and face orientation separately. These results suggest that body and face orientation encode two different types of information. Whereas face orientation encodes the observer's perceptual access, body orientation encodes the observer's disposition to transfer food. In contrast to the results on body and face orientation, only two of the tested subjects responded to the state of the observer's eyes.
|
|
|
Miklósi, Á., & Soproni, K. (2006). A comparative analysis of animals' understanding of the human pointing gesture. Anim. Cogn., 9(2), 81–93.
Abstract: We review studies demonstrating the ability of some animals to understand the human pointing gesture. We present a 3-step analysis of the topic. (1) We compare and evaluate current experimental methods (2) We compare available experimental results on performance of different species and investigate the interaction of species differences and other independent variables (3) We evaluate how our present understanding of pointing comprehension answers questions about function, evolution and mechanisms. Recently, a number of different hypotheses have been put forward to account for the presence of this ability in some species and for the lack of such comprehension in others. In our view, there is no convincing evidence for the assumption that the competitive lifestyles of apes would inhibit the utilization of this human gesture. Similarly, domestication as a special evolutionary factor in the case of some species falls short in explaining high levels of pointing comprehension in some non-domestic species. We also disagree with the simplistic view of describing the phenomenon as a simple form of conditioning. We suggest that a more systematic comparative research is needed to understand the emerging communicative representational abilities in animals that provide the background for comprehending the human pointing gesture.
|
|
|
Riedel, J., Buttelmann, D., Call, J., & Tomasello, M. (2006). Domestic dogs (Canis familiaris) use a physical marker to locate hidden food. Anim. Cogn., 9(1), 27–35.
Abstract: Dogs can use the placement of an arbitrary marker to locate hidden food in an object-choice situation. We tested domestic dogs (Canis familiaris) in three studies aimed at pinning down the relative contributions of the human's hand and the marker itself. We baited one of two cups (outside of the dogs' view) and gave the dog a communicative cue to find the food. Study 1 systematically varied dogs' perceptual access to the marker placing event, so that dogs saw either the whole human, the hand only, the marker only, or nothing. Follow-up trials investigated the effect of removing the marker before the dog's choice. Dogs used the marker as a communicative cue even when it had been removed prior to the dog's choice and attached more importance to this cue than to the hand that placed it although the presence of the hand boosted performance when it appeared together with the marker. Study 2 directly contrasted the importance of the hand and the marker and revealed that the effect of the marker diminished if it had been associated with both cups. In contrast touching both cups with the hand had no effect on performance. Study 3 investigated whether the means of marker placement (intentional or accidental) had an effect on dogs' choices. Results showed that dogs did not differentiate intentional and accidental placing of the marker. These results suggest that dogs use the marker as a genuine communicative cue quite independently from the experimenter's actions.
|
|
|
Schwab, C., & Huber, L. (2006). Obey or not obey? Dogs (Canis familiaris) behave differently in response to attentional states of their owners. J Comp Psychol, 120(3), 169–175.
Abstract: Sixteen domestic dogs (Canis familiaris) were tested in a familiar context in a series of 1-min trials on how well they obeyed after being told by their owner to lie down. Food was used in 1/3 of all trials, and during the trial the owner engaged in 1 of 5 activities. The dogs behaved differently depending on the owner's attention to them. When being watched by the owner, the dogs stayed lying down most often and/or for the longest time compared with when the owner read a book, watched TV, turned his or her back on them, or left the room. These results indicate that the dogs sensed the attentional state of their owners by judging observable behavioral cues such as eye contact and eye, head, and body orientation.
|
|