|
Judge, N. G. (1969). Transport of horses. Aust Vet J, 45(10), 465–469.
|
|
|
Lane, J. G., & Mair, T. S. (1987). Observations on headshaking in the horse. Equine Vet J, 19(4), 331–336.
Abstract: The clinical records of 100 cases of headshaking in horses were reviewed. Possible causes of the abnormal behaviour were identified in 11 animals; these included ear mite infestation, otitis interna, cranial nerve dysfunction, cervical injury, ocular disease, guttural pouch mycosis, dental periapical osteitis and suspected vasomotor rhinitis. However, in only two of these could it be shown that correction of the abnormality led to elimination of the headshaking. The additional clinical signs exhibited by the other idiopathic cases of headshaking included evidence of nasal irritation, sneezing and snorting, nasal discharge, coughing and excessive lacrimation. Many of these horses also showed a marked seasonal pattern with respect to the onset of the disease and the recurrence of signs in subsequent years. The clinical presentation of idiopathic headshakers and the seasonal incidence of the signs closely resemble allergic rhinitis in man.
|
|
|
Nielsen, M., Collier-Baker, E., Davis, J. M., & Suddendorf, T. (2005). Imitation recognition in a captive chimpanzee (Pan troglodytes). Anim. Cogn., 8(1), 31–36.
Abstract: This study investigated the ability of a captive chimpanzee (Pan troglodytes) to recognise when he is being imitated. In the experimental condition of test 1a, an experimenter imitated the postures and behaviours of the chimpanzee as they were being displayed. In three control conditions the same experimenter exhibited (1) actions that were contingent on, but different from, the actions of the chimpanzee, (2) actions that were not contingent on, and different from, the actions of the chimpanzee, or (3) no action at all. The chimpanzee showed more “testing” sequences (i.e., systematically varying his actions while oriented to the imitating experimenter) and more repetitive behaviour when he was being imitated, than when he was not. This finding was replicated 4 months later in test 1b. When the experimenter repeated the same actions she displayed in the experimental condition of test 1a back to the chimpanzee in test 2, these actions now did not elicit those same testing sequences or repetitive behaviours. However, a live imitation condition did. Together these results provide the first evidence of imitation recognition in a nonhuman animal.
|
|
|
Viscido, S. V., Miller, M., & Wethey, D. S. (2001). The response of a selfish herd to an attack from outside the group perimeter. J. Theor. Biol., 208(3), 315–328.
Abstract: According to the selfish herd hypothesis, animals can decrease predation risk by moving toward one another if the predator can appear anywhere and will attack the nearest target. Previous studies have shown that aggregations can form using simple movement rules designed to decrease each animal's Domain of Danger. However, if the predator attacks from outside the group's perimeter, these simple movement rules might not lead to aggregation. To test whether simple selfish movement rules would decrease predation risk for those situations when the predator attacks from outside the flock perimeter, we constructed a computer model that allowed flocks of 75 simulated fiddler crabs to react to one another, and to a predator attacking from 7 m away. We attacked simulated crab flocks with predators of different sizes and attack speeds, and computed relative predation risk after 120 time steps. Final trajectories showed flight toward the center of the flock, but curving away from the predator. Path curvature depended on the predator's size and approach speed. The average crab experienced a greater decrease in predation risk when the predator was small or slow moving. Regardless of the predator's size and speed, however, predation risk always decreased as long as crabs took their flock-mates into account. We conclude that, even when flight away from an external predator occurs, the selfish avoidance of danger can lead to aggregation.
|
|