|
Gill, J. (1991). A new method for continuous recording of motor activity in horses. Comp Biochem Physiol A, 99(3), 333–341.
Abstract: 1. The use of an electronic recorder for the horse motor activity was described. 2. Examples of different types of motor activities are given in Figs 1-8. 3. The ultradian pattern of activity in all records was stressed. 4. The possibility of receiving of more physiological informations by this type of apparatus is discussed.
|
|
|
Viscido, S. V., Miller, M., & Wethey, D. S. (2002). The dilemma of the selfish herd: the search for a realistic movement rule. J. Theor. Biol., 217(2), 183–194.
Abstract: The selfish herd hypothesis predicts that aggregations form because individuals move toward one another to minimize their own predation risk. The “dilemma of the selfish herd” is that movement rules that are easy for individuals to follow, fail to produce true aggregations, while rules that produce aggregations require individual behavior so complex that one may doubt most animals can follow them. If natural selection at the individual level is responsible for herding behavior, a solution to the dilemma must exist. Using computer simulations, we examined four different movement rules. Relative predation risk was different for all four movement rules (p<0.05). We defined three criteria for measuring the quality of a movement rule. A good movement rule should (a) be statistically likely to benefit an individual that follows it, (b) be something we can imagine most animals are capable of following, and (c) result in a centrally compact flock. The local crowded horizon rule, which allowed individuals to take the positions of many flock-mates into account, but decreased the influence of flock-mates with distance, best satisfied these criteria. The local crowded horizon rule was very sensitive to the animal's perceptive ability. Therefore, the animal's ability to detect its neighbors is an important factor in the dynamics of group formation.
|
|
|
Wallace, D. G., Hamilton, D. A., & Whishaw, I. Q. (2006). Movement characteristics support a role for dead reckoning in organizing exploratory behavior. Anim. Cogn., 9(3), 219–228.
Abstract: Rat exploration is an organized series of trips. Each exploratory trip involves an outward tour from the refuge followed by a return to the refuge. A tour consists of a sequence of progressions with variable direction and speed concatenated by stops, whereas the return consists of a single direct progression. We have argued that processing self-movement information generated on the tour allows a rat to plot the return to the refuge. This claim has been supported by observing consistent differences between tour and return segments independent of ambient cue availability; however, this distinction was based on differences in movement characteristics derived from multiple progressions and stops on the tour and the single progression on the return. The present study examines movement characteristics of the tour and return progressions under novel-dark and light conditions. Three novel characteristics of progressions were identified: (1) linear speeds and path curvature of exploratory trips are negatively correlated, (2) tour progression maximum linear speed and temporal pacing varies as a function of travel distance, and (3) return progression movement characteristics are qualitatively different from tour progressions of comparable length. These observations support a role for dead reckoning in organizing exploratory behavior.
|
|