|
Kaplan, A. I., & Borodovskii, M. I. (1989). [Alternative animal behavior: a model and its statistical characteristics]. Nauchnye Doki Vyss Shkoly Biol Nauki, (3), 29–32.
Abstract: The rats' alternative behaviour in T-maze at simultaneous two-sided food refreshment in 13 trials a day during 6 days has been studied. It has been found that in the first testing days the indexes of alternative behaviour of animals correspond to the characteristics of the random alternation. However, on the 5-6th day of testing in the overwhelming majority of rats the true deviation of alternation index above or below than the theoretical values has been revealed. A question on the existence of two strategies of cognitive behaviour alteration and perseveration in rat population is under discussion.
|
|
|
Pattison, P., & Wasserman, S. (1999). Logit models and logistic regressions for social networks: II. Multivariate relations. Br J Math Stat Psychol, 52 ( Pt 2), 169–193.
Abstract: The research described here builds on our previous work by generalizing the univariate models described there to models for multivariate relations. This family, labelled p*, generalizes the Markov random graphs of Frank and Strauss, which were further developed by them and others, building on Besag's ideas on estimation. These models were first used to model random variables embedded in lattices by Ising, and have been quite common in the study of spatial data. Here, they are applied to the statistical analysis of multigraphs, in general, and the analysis of multivariate social networks, in particular. In this paper, we show how to formulate models for multivariate social networks by considering a range of theoretical claims about social structure. We illustrate the models by developing structural models for several multivariate networks.
|
|