|
Broom, M. (2002). A unified model of dominance hierarchy formation and maintenance. J. Theor. Biol., 219(1), 63–72.
Abstract: In many different species it is common for animals to spend large portions of their lives in groups. Such groups need to divide available resources amongst the individuals they contain and this is often achieved by means of a dominance hierarchy. Sometimes hierarchies are stable over a long period of time and new individuals slot into pre-determined positions, but there are many situations where this is not so and a hierarchy is formed out of a group of individuals meeting for the first time. There are several different models both of the formation of such dominance hierarchies and of already existing hierarchies. These models often treat the two phases as entirely separate, whereas in reality, if there is a genuine formation phase to the hierarchy, behaviour in this phase will be governed by the rewards available, which in turn depends upon how the hierarchy operates once it has been formed. This paper describes a method of unifying models of these two distinct phases, assuming that the hierarchy formed is stable. In particular a framework is introduced which allows a variety of different models of each of the two parts to be used in conjunction with each other, thus enabling a wide range of situations to be modelled. Some examples are given to show how this works in practice.
|
|
|
Church, R. M. (1997). Quantitative models of animal learning and cognition. J Exp Psychol Anim Behav Process, 23(4), 379–389.
Abstract: This article reviews the prerequisites for quantitative models of animal learning and cognition, describes the types of models, provides a rationale for the development of such quantitative models, describes criteria for their evaluation, and makes recommendations for the next generation of quantitative models. A modular approach to the development of models is described in which a procedure is considered as a generator of stimuli and a model is considered as a generator of responses. The goal is to develop models that, in combination with many different procedures, produce sequences of times of occurrence of events (stimuli and responses) that are indistinguishable from those produced by the animal under many experimental procedures and data analysis techniques.
|
|
|
Pepperberg, I. M. (2002). The value of the Piagetian framework for comparative cognitive studies. Anim. Cogn., 5(3), 177–182.
Abstract: Although the Piagetian framework has been used by numerous researchers to compare cognitive abilities of diverse species, the system is often criticized as implemented. I examine the various criticisms, suggest ways in which the system can be improved, and argue for the need for descriptive systems such as the Piagetian framework to complement programs that look for cellular and molecular bases or mathematical models to explain behavior.
|
|