|
Allen, D., & Tanner, K. (2007). Putting the horse back in front of the cart: using visions and decisions about high-quality learning experiences to drive course design. CBE Life Sci Educ, 6(2), 85–89.
|
|
|
Anderson, J. R., Kuwahata, H., & Fujita, K. (2007). Gaze alternation during “pointing” by squirrel monkeys (Saimiri sciureus)? Anim. Cogn., 10(2), 267–271.
Abstract: Gaze alternation (GA) is considered a hallmark of pointing in human infants, a sign of intentionality underlying the gesture. GA has occasionally been observed in great apes, and reported only anecdotally in a few monkeys. Three squirrel monkeys that had previously learned to reach toward out-of-reach food in the presence of a human partner were videotaped while the latter visually attended to the food, a distractor object, or the ceiling. Frame-by-frame video analysis revealed that, especially when reaching toward the food, the monkeys rapidly and repeatedly switched between looking at the partner's face and the food. This type of GA suggests that the monkeys were communicating with the partner. However, the monkeys' behavior was not influenced by changes in the partner's focus of attention.
|
|
|
Bloom, P. (2004). Behavior. Can a dog learn a word? Science, 304(5677), 1605–1606.
|
|
|
Bouchard, J., Goodyer, W., & Lefebvre, L. (2007). Social learning and innovation are positively correlated in pigeons (Columba livia). Anim. Cogn., 10(2), 259–266.
Abstract: When animals show both frequent innovation and fast social learning, new behaviours can spread more rapidly through populations and potentially increase rates of natural selection and speciation, as proposed by A.C. Wilson in his behavioural drive hypothesis. Comparative work on primates suggests that more innovative species also show more social learning. In this study, we look at intra-specific variation in innovation and social learning in captive wild-caught pigeons. Performances on an innovative problem-solving task and a social learning task are positively correlated in 42 individuals. The correlation remains significant when the effects of neophobia on the two abilities are removed. Neither sex nor dominance rank are associated with performance on the two tasks. Free-flying flocks of urban pigeons are able to solve the innovative food-finding problem used on captive birds, demonstrating it is within the range of their natural capacities. Taken together with the comparative literature, the positive correlation between innovation and social learning suggests that the two abilities are not traded-off.
|
|
|
Brosnan, S. F., & de Waal, F. B. M. (2004). A concept of value during experimental exchange in brown capuchin monkeys, Cebus apella. Folia Primatol (Basel), 75(5), 317–330.
Abstract: We evaluated the response of brown capuchin monkeys to two differentially valued tokens in an experimental exchange situation akin to a simple barter. Monkeys were given a series of three tests to evaluate their ability to associate tokens with food, then their responses were examined in a barter situation in which tokens were either limited or unlimited. Capuchins did not perform barter in the typical sense, returning the tokens which were associated with the reward. However, females, but not males, showed a different response, preferring the higher-value token. This may indicate that they learned to prefer one token over the other rather than to associate the tokens with their specific rewards. This sex difference parallels previous findings of greater reciprocity in female brown capuchins than in males.
|
|
|
Brosnan, S. F., & de Waal, F. B. M. (2004). Socially learned preferences for differentially rewarded tokens in the brown capuchin monkey (Cebus apella). J Comp Psychol, 118(2), 133–139.
Abstract: Social learning is assumed to underlie traditions, yet evidence indicating social learning in capuchin monkeys (Cebus apella), which exhibit traditions, is sparse. The authors tested capuchins for their ability to learn the value of novel tokens using a previously familiar token-exchange economy. Capuchins change their preferences in favor of a token worth a high-value food reward after watching a conspecific model exchange 2 differentially rewarded tokens, yet they fail to develop a similar preference after watching tokens paired with foods in the absence of a conspecific model. They also fail to learn that the value of familiar tokens has changed. Information about token value is available in all situations, but capuchins seem to pay more attention in a social situation involving novel tokens.
|
|
|
Burke, D., Cieplucha, C., Cass, J., Russell, F., & Fry, G. (2002). Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus). Anim. Cogn., 5(2), 79–84.
Abstract: Numerous previous investigators have explained species differences in spatial memory performance in terms of differences in foraging ecology. In three experiments we attempted to extend these findings by examining the extent to which the spatial memory performance of echidnas (or “spiny anteaters”) can be understood in terms of the spatio-temporal distribution of their prey (ants and termites). This is a species and a foraging situation that have not been examined in this way before. Echidnas were better able to learn to avoid a previously rewarding location (to “win-shift”) than to learn to return to a previously rewarding location (to “win-stay”), at short retention intervals, but were unable to learn either of these strategies at retention intervals of 90 min. The short retention interval results support the ecological hypothesis, but the long retention interval results do not.
|
|
|
Call, J., Carpenter, M., & Tomasello, M. (2005). Copying results and copying actions in the process of social learning: chimpanzees (Pan troglodytes) and human children (Homo sapiens). Anim. Cogn., 8(3), 151–163.
Abstract: There is currently much debate about the nature of social learning in chimpanzees. The main question is whether they can copy others' actions, as opposed to reproducing the environmental effects of these actions using their own preexisting behavioral strategies. In the current study, chimpanzees (Pan troglodytes) and human children (Homo sapiens) were shown different demonstrations of how to open a tube-in both cases by a conspecific. In different experimental conditions, demonstrations consisted of (1) action only (the actions necessary to open the tube without actually opening it); (2) end state only (the open tube, without showing any actions); (3) both of these components (in a full demonstration); or (4) neither of these components (in a baseline condition). In the first three conditions subjects saw one of two different ways that the tube could open (break in middle; caps off ends). Subjects' behavior in each condition was assessed for how often they opened the tube, how often they opened it in the same location as the demonstrator, and how often they copied the demonstrator's actions or style of opening the tube. Whereas chimpanzees reproduced mainly the environmental results of the demonstrations (emulation), human children often reproduced the demonstrator's actions (imitation). Because the procedure used was similar in many ways to the procedure that Meltzoff (Dev Psych 31:1, 1995) used to study the understanding of others' unfulfilled intentions, the implications of these findings with regard to chimpanzees' understanding of others' intentions are also discussed.
|
|
|
Chappell, J., & Kacelnik, A. (2002). Tool selectivity in a non-primate, the New Caledonian crow (Corvus moneduloides). Anim. Cogn., 5(2), 71–78.
Abstract: We present an experiment showing that New Caledonian crows are able to choose tools of the appropriate size for a novel task, without trial-and-error learning. This species is almost unique amongst all animal species (together with a few primates) in the degree of use and manufacture of polymorphic tools in the wild. However, until now, the flexibility of their tool use has not been tested. Flexibility, including the ability to select an appropriate tool for a task, is considered to be a hallmark of complex cognitive adaptations for tool use. In experiment 1, we tested the ability of two captive birds (one male, one female), to select a stick (from a range of lengths provided) matching the distance to food placed in a horizontal transparent pipe. Both birds chose tools matching the distance to their target significantly more often than would be expected by chance. In experiment 2, we used a similar task, but with the tools placed out of sight of the food pipe, such that the birds had to remember the distance of the food before selecting a tool. The task was completed only by the male, who chose a tool of sufficient length significantly more often than chance but did not show a preference for a matching length.
|
|
|
Church, R. M. (1997). Quantitative models of animal learning and cognition. J Exp Psychol Anim Behav Process, 23(4), 379–389.
Abstract: This article reviews the prerequisites for quantitative models of animal learning and cognition, describes the types of models, provides a rationale for the development of such quantitative models, describes criteria for their evaluation, and makes recommendations for the next generation of quantitative models. A modular approach to the development of models is described in which a procedure is considered as a generator of stimuli and a model is considered as a generator of responses. The goal is to develop models that, in combination with many different procedures, produce sequences of times of occurrence of events (stimuli and responses) that are indistinguishable from those produced by the animal under many experimental procedures and data analysis techniques.
|
|