|
Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 1204–1207.
Abstract: Humans regularly produce new utterances that are understood by other members of the same language community. Linguistic theories account for this ability through the use of syntactic rules (or generative grammars) that describe the acceptable structure of utterances. The recursive, hierarchical embedding of language units (for example, words or phrases within shorter sentences) that is part of the ability to construct new utterances minimally requires a 'context-free' grammar that is more complex than the 'finite-state' grammars thought sufficient to specify the structure of all non-human communication signals. Recent hypotheses make the central claim that the capacity for syntactic recursion forms the computational core of a uniquely human language faculty. Here we show that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns defined by a recursive, self-embedding, context-free grammar. They are also able to classify new patterns defined by the grammar and reliably exclude agrammatical patterns. Thus, the capacity to classify sequences from recursive, centre-embedded grammars is not uniquely human. This finding opens a new range of complex syntactic processing mechanisms to physiological investigation.
|
|
|
Linton, M. L. (1970). Washoe the chimpanzee. Science, 169(943), 328.
|
|
|
Seyfarth, R. M., Cheney, D. L., & Bergman, T. J. (2005). Primate social cognition and the origins of language. Trends. Cognit. Sci., 9(6), 264–266.
Abstract: Are the cognitive mechanisms underlying language unique, or can similar mechanisms be found in other domains? Recent field experiments demonstrate that baboons' knowledge of their companions' social relationships is based on discrete-valued traits (identity, rank, kinship) that are combined to create a representation of social relations that is hierarchically structured, open-ended, rule-governed, and independent of sensory modality. The mechanisms underlying language might have evolved from the social knowledge of our pre-linguistic primate ancestors.
|
|
|
Toro, J. M., Trobalon, J. B., & Sebastian-Galles, N. (2003). The use of prosodic cues in language discrimination tasks by rats. Anim. Cogn., 6(2), 131–136.
Abstract: Recent research with cotton-top tamarin monkeys has revealed language discrimination abilities similar to those found in human infants, demonstrating that these perceptual abilities are not unique to humans but are also present in non-human primates. Specifically, tamarins could discriminate forward but not backward sentences of Dutch from Japanese, using both natural and synthesized utterances. The present study was designed as a conceptual replication of the work on tamarins. Results show that rats trained in a discrimination learning task readily discriminate forward, but not backward sentences of Dutch from Japanese; the results are particularly robust for synthetic utterances, a pattern that shows greater parallels with newborns than with tamarins. Our results extend the claims made in the research with tamarins that the capacity to discriminate languages from different rhythmic classes depends on general perceptual abilities that evolved at least as far back as the rodents.
|
|
|
Watanabe, S., & Huber, L. (2006). Animal logics: decisions in the absence of human language. Anim. Cogn., 9(4), 235–245.
Abstract: Without Abstract
|
|