|
Dunbar, R. I. M., McAdam, M. R., & O'connell, S. (2005). Mental rehearsal in great apes (Pan troglodytes and Pongo pygmaeus) and children. Behav. Process., 69(3), 323–330.
Abstract: The ability to rehearse possible future courses of action in the mind is an important feature of advanced social cognition in humans, and the “social brain” hypothesis implies that it might also be a feature of primate social cognition. We tested two chimpanzees, six orangutans and 63 children aged 3-7 years on a set of four puzzle boxes, half of which were presented with an opportunity to observe the box before being allowed to open it (“prior view”), the others being given without an opportunity to examine the boxes before handling them (“no prior view”). When learning effects are partialled out, puzzle boxes in the “prior view” condition were opened significantly faster than boxes given in the “no prior view” condition by the children, but not by either of the great apes. The three species differ significantly in the speed with which they opened boxes in the “no prior view” condition. The three species' performance on this task was a function of relative frontal lobe volume, suggesting that it may be possible to identify quantitative neuropsychological differences between species.
|
|
|
Reid, P. J., & Shettleworth, S. J. (1992). Detection of cryptic prey: search image or search rate? J Exp Psychol Anim Behav Process, 18(3), 273–286.
Abstract: Animals' improvement in capturing cryptic prey with experience has long been attributed to a perceptual mechanism, the specific search image. Detection could also be improved by adjusting rate of search. In a series of studies using both naturalistic and operant search tasks, pigeons searched for wheat, dyed to produce 1 conspicuous and 2 equally cryptic prey types. Contrary to the predictions of the search-rate hypothesis, pigeons given a choice between the 2 cryptic types took the type experienced most recently. However, experience with 1 cryptic type improved accuracy on the other cryptic type, a result inconsistent with a search image specific to 1 prey type. Search image may better be thought of as priming of attention to those features of the prey type that best distinguish the prey from the background.
|
|
|
Rilling, M. E., & Neiworth, J. J. (1991). How animals use images. Sci Prog, 75(298 Pt 3-4), 439–452.
Abstract: Animal cognition is a field within experimental psychology in which cognitive processes formerly studied exclusively with people have been demonstrated in animals. Evidence for imagery in the pigeon emerges from the experiments described here. The pigeon's task was to discriminate, by pecking the appropriate choice key, between a clock hand presented on a video screen that rotated clockwise with constant velocity from a clock hand that violated constant velocity. Imagery was defined by trials on which the line rotated from 12.00 o'clock to 3.00 o'clock, then disappeared during a delay, and reappeared at a final stop location beyond 3.00 o'clock. After acquisition of a discrimination with final stop locations at 3.00 o'clock and 6.00 o'clock, the evidence for imagery was the accurate responding of the pigeons to novel locations at 4.00 o'clock and 7.00 o'clock. Pigeons display evidence of imagery by transforming a representation of movement that includes a series of intermediate steps which accurately represent the location of a moving stimulus after it disappears.
|
|
|
Ruggieri, V. (1999). The running horse stops: the hypothetical role of the eyes in imagery of movement. Percept Mot Skills, 89(3 Pt 2), 1088–1092.
Abstract: To examine the hypothetical role of the eyes in visual mental imagery of movement 72 undergraduate women students in psychology were asked to imagine a running horse and then to produce the same mental image without moving the eyes and the head. In 59% of the subjects interesting modifications of the imagined movement appeared: 37% observed an inhibition of the movement and 19% an evident slowing up of the moving figure. The interpretation of this result was made by hypothesizing that the eyes are concretely involved in visual imagery processes.
|
|
|
Zentall, T. R. (2006). Mental time travel in animals: a challenging question. Behav. Process., 72(2), 173–183.
Abstract: Humans have the ability to mentally recreate past events (using episodic memory) and imagine future events (by planning). The best evidence for such mental time travel is personal and thus subjective. For this reason, it is particularly difficult to study such behavior in animals. There is some indirect evidence, however, that animals have both episodic memory and the ability to plan for the future. When unexpectedly asked to do so, animals can report about their recent past experiences (episodic memory) and they also appear to be able to use the anticipation of a future event as the basis for a present action (planning). Thus, the ability to imagine past and future events may not be uniquely human.
|
|