|
Cynx, J., Hulse, S. H., & Polyzois, S. (1986). A psychophysical measure of pitch discrimination loss resulting from a frequency range constraint in European starlings (Sturnus vulgaris). J Exp Psychol Anim Behav Process, 12(4), 394–402.
Abstract: Earlier research (Hulse & Cynx, 1985) revealed that a number of species of songbirds acquired a pitch discrimination between rising and falling sequences in an arbitrarily defined training range of frequencies, but then failed to generalize the discrimination to new frequency ranges--a frequency range constraint. The two experiments here provide a psychophysical estimate of how pitch discrimination deteriorated in one species as sequences were stepped out from the training range. The gradient showing loss of discrimination was much sharper than would have been anticipated by stimulus generalization or the training procedures, and appeared unaffected by the removal of rising and falling frequency information. The frequency range constraint and its psychophysical properties have implications both for the analysis of birdsong and the study of animal cognition.
|
|
|
Dougherty, D. M., & Lewis, P. (1991). Stimulus generalization, discrimination learning, and peak shift in horses. J Exp Anal Behav, 56(1), 97–104.
Abstract: Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms.
|
|
|
Gazit, I., Goldblatt, A., & Terkel, J. (2005). The role of context specificity in learning: the effects of training context on explosives detection in dogs. Anim. Cogn., 8(3), 143–150.
Abstract: Various experiments revealed that if an animal learns a stimulus-response-reinforcer relationship in one context and is then tested in another context there is usually a lessening of stimulus control, and the same discriminative stimuli that reliably controlled the behavior in the first context will have less effect in the new context. This reduction in performance is known as the “context shift effect.” The effect of changing context on the probability of detecting explosives was investigated in seven highly trained explosives detection dogs (EDDs). In experiment 1 the dogs were trained alternately on path A, which always had five hidden explosives, and on a very similar path B, which never had any explosives. Within a few sessions the dogs showed a significant decrease in search behavior on path B, but not on path A. In experiment 2 the same dogs were trained only on path B with a target density of one explosive hidden every 4th day. The probability of the dogs now detecting the explosive was found to be significantly lower than in experiment 1. In experiment 3 the effect of the low target density as used in experiment 2 was investigated on a new but very similar path C. Both the detection probability for the one explosive every 4th day on the new path and the motivation to search were significantly higher than found in experiment 2. Finally, in experiment 4, an attempt was made to recondition the dogs to search on path B. Although trained for 12 daily sessions with one explosive hidden every session, the dogs failed to regain the normal levels of motivation they had shown on both new paths and on the paths that they knew usually contained explosives. The findings reveal that even a very intensively trained EDD will rapidly learn that a specific stretch of path does not contain explosives. The dog will then be less motivated to search and will miss newly placed targets. This learning is specific to the formerly always-clean path and is to some extent irreversible. However, the dog will search and detect normally on new paths even if they are very similar to the always-clean path. The data are discussed in terms of variables affecting renewal. The results suggest that following training designed to make a behavior “context independent,” any extinction training will not generalize beyond that specific context used during the extinction training. In addition, if the behavior is extinguished in a specific context, it will be very difficult to restore that behavior in that context. These conclusions should be considered by anyone attempting to extinguish well-established trans-context behaviors.
|
|
|
Murai, C., Tomonaga, M., Kamegai, K., Terazawa, N., & Yamaguchi, M. K. (2004). Do infant Japanese macaques ( Macaca fuscata) categorize objects without specific training? Primates, 45(1), 1–6.
Abstract: In the present study, we examined whether infant Japanese macaques categorize objects without any training, using a similar technique also used with human infants (the paired-preference method). During the familiarization phase, subjects were presented twice with two pairs of different objects from one global-level category. During the test phase, they were presented twice with a pair consisting of a novel familiar-category object and a novel global-level category object. The subjects were tested with three global-level categories (animal, furniture, and vehicle). It was found that they showed significant novelty preferences as a whole, indicating that they processed similarities between familiarization objects and novel familiar-category objects. These results suggest that subjects responded distinctively to objects without training, indicating the possibility that infant macaques possess the capacity for categorization.
|
|
|
Zentall, T. R., Jackson-Smith, P., Jagielo, J. A., & Nallan, G. B. (1986). Categorical shape and color coding by pigeons. J Exp Psychol Anim Behav Process, 12(2), 153–159.
Abstract: Categorical coding is the tendency to respond similarly to discriminated stimuli. Past research indicates that pigeons can categorize colors according to at least three spectral regions. Two present experiments assessed the categorical coding of shapes and the existence of a higher order color category (all colors). Pigeons were trained on two independent tasks (matching-to-sample, and oddity-from-sample). One task involved red and a plus sign, the other a circle and green. On test trials one of the two comparison stimuli from one task was replaced by one of the stimuli from the other task. Differential performance based on which of the two stimuli from the other task was introduced suggested categorical coding rules. In Experiment 1 evidence for the categorical coding of sample shapes was found. Categorical color coding was also found; however, it was the comparison stimuli rather than the samples that were categorically coded. Experiment 2 replicated the categorical shape sample effect and ruled out the possibility that the particular colors used were responsible for the categorical coding of comparison stimuli. Overall, the results indicate that pigeons can develop categorical rules involving shapes and colors and that the color categories can be hierarchical.
|
|