|
Biro, D., Inoue-Nakamura, N., Tonooka, R., Yamakoshi, G., Sousa, C., & Matsuzawa, T. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Anim. Cogn., 6(4), 213–223.
Abstract: Chimpanzees (Pan troglodytes) are the most proficient and versatile users of tools in the wild. How such skills become integrated into the behavioural repertoire of wild chimpanzee communities is investigated here by drawing together evidence from three complementary approaches in a group of oil-palm nut- ( Elaeis guineensis) cracking chimpanzees at Bossou, Guinea. First, extensive surveys of communities adjacent to Bossou have shown that population-specific details of tool use, such as the selection of species of nuts as targets for cracking, cannot be explained purely on the basis of ecological differences. Second, a 16-year longitudinal record tracing the development of nut-cracking in individual chimpanzees has highlighted the importance of a critical period for learning (3-5 years of age), while the similar learning contexts experienced by siblings have been found to result in near-perfect (13 out of 14 dyads) inter-sibling correspondence in laterality. Third, novel data from field experiments involving the introduction of unfamiliar species of nuts to the Bossou group illuminates key aspects of both cultural innovation and transmission. We show that responses of individuals toward the novel items differ markedly with age, with juveniles being the most likely to explore. Furthermore, subjects are highly specific in their selection of conspecifics as models for observation, attending to the nut-cracking activities of individuals in the same age group or older, but not younger than themselves. Together with the phenomenon of inter-community migration, these results demonstrate a mechanism for the emergence of culture in wild chimpanzees.
|
|
|
Fragaszy, D., & Visalberghi, E. (2004). Socially biased learning in monkeys. Learn Behav, 32(1), 24–35.
Abstract: We review socially biased learning about food and problem solving in monkeys, relying especially on studies with tufted capuchin monkeys (Cebus apella) and callitrichid monkeys. Capuchin monkeys most effectively learn to solve a new problem when they can act jointly with an experienced partner in a socially tolerant setting and when the problem can be solved by direct action on an object or substrate, but they do not learn by imitation. Capuchin monkeys are motivated to eat foods, whether familiar or novel, when they are with others that are eating, regardless of what the others are eating. Thus, social bias in learning about foods is indirect and mediated by facilitation of feeding. In most respects, social biases in learning are similar in capuchins and callitrichids, except that callitrichids provide more specific behavioral cues to others about the availability and palatability of foods. Callitrichids generally are more tolerant toward group members and coordinate their activity in space and time more closely than capuchins do. These characteristics support stronger social biases in learning in callitrichids than in capuchins in some situations. On the other hand, callitrichids' more limited range of manipulative behaviors, greater neophobia, and greater sensitivity to the risk of predation restricts what these monkeys learn in comparison with capuchins. We suggest that socially biased learning is always the collective outcome of interacting physical, social, and individual factors, and that differences across populations and species in social bias in learning reflect variations in all these dimensions. Progress in understanding socially biased learning in nonhuman species will be aided by the development of appropriately detailed models of the richly interconnected processes affecting learning.
|
|