|
Keay, J. M., Singh, J., Gaunt, M. C., & Kaur, T. (2006). Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. J Zoo Wildl Med, 37(3), 234–244.
Abstract: Conservation medicine is a discipline in which researchers and conservationists study and respond to the dynamic interplay between animals, humans, and the environment. From a wildlife perspective, animal species are encountering stressors from numerous sources. With the rapidly increasing human population, a corresponding increased demand for food, fuel, and shelter; habitat destruction; and increased competition for natural resources, the health and well-being of wild animal populations is increasingly at risk of disease and endangerment. Scientific data are needed to measure the impact that human encroachment is having on wildlife. Nonbiased biometric data provide a means to measure the amount of stress being imposed on animals from humans, the environment, and other animals. The stress response in animals functions via glucocorticoid metabolism and is regulated by the hypothalamic-pituitary-adrenal axis. Fecal glucocorticoids, in particular, may be an extremely useful biometric test, since sample collection is noninvasive to subjects and, therefore, does not introduce other variables that may alter assay results. For this reason, many researchers and conservationists have begun to use fecal glucocorticoids as a means to measure stress in various animal species. This review article summarizes the literature on many studies in which fecal glucocorticoids and their metabolites have been used to assess stress levels in various mammalian species. Variations between studies are the main focus of this review. Collection methods, storage conditions, shipping procedures, and laboratory techniques utilized by different researchers are discussed.
|
|
|
Scheffer, M., & van Nes, E. H. (2006). Self-organized similarity, the evolutionary emergence of groups of similar species. Proc. Natl. Acad. Sci. U.S.A., 103(16), 6230–6235.
Abstract: Ecologists have long been puzzled by the fact that there are so many similar species in nature. Here we show that self-organized clusters of look-a-likes may emerge spontaneously from coevolution of competitors. The explanation is that there are two alternative ways to survive together: being sufficiently different or being sufficiently similar. Using a model based on classical competition theory, we demonstrate a tendency for evolutionary emergence of regularly spaced lumps of similar species along a niche axis. Indeed, such lumpy patterns are commonly observed in size distributions of organisms ranging from algae, zooplankton, and beetles to birds and mammals, and could not be well explained by earlier theory. Our results suggest that these patterns may represent self-constructed niches emerging from competitive interactions. A corollary of our findings is that, whereas in species-poor communities sympatric speciation and invasion of open niches is possible, species-saturated communities may be characterized by convergent evolution and invasion by look-a-likes.
|
|
|
Shultz, S., & Dunbar, R. I. M. (2006). Both social and ecological factors predict ungulate brain size. Proc Biol Sci, 273(1583), 207–215.
Abstract: Among mammals, the members of some Orders have relatively large brains. Alternative explanations for this have emphasized either social or ecological selection pressures favouring greater information-processing capacities, including large group size, greater foraging efficiency, higher innovation rates, better invasion success and complex problem solving. However, the focal taxa for these analyses (primates, carnivores and birds) often show both varied ecological competence and social complexity. Here, we focus on the specific relationship between social complexity and brain size in ungulates, a group with relatively simple patterns of resource use, but extremely varied social behaviours. The statistical approach we used, phylogenetic generalized least squares, showed that relative brain size was independently associated with sociality and social complexity as well as with habitat use, while relative neocortex size is associated with social but not ecological factors. A simple index of sociality was a better predictor of both total brain and neocortex size than group size, which may indicate that the cognitive demands of sociality depend on the nature of social relationships as well as the total number of individuals in a group.
|
|