|
Agrillo, C., Dadda, M., & Bisazza, A. (2007). Quantity discrimination in female mosquitofish. Anim. Cogn., 10(1), 63–70.
Abstract: The ability in animals to count and represent different numbers of objects has received a great deal of attention in the past few decades. Cumulative evidence from comparative studies on number discriminations report obvious analogies among human babies, non-human primates and birds and are consistent with the hypothesis of two distinct and widespread mechanisms, one for counting small numbers (<4) precisely, and one for quantifying large numbers approximately. We investigated the ability to discriminate among different numerosities, in a distantly related species, the mosquitofish, by using the spontaneous choice of a gravid female to join large groups of females as protection from a sexually harassing male. In one experiment, we found that females were able to discriminate between two shoals with a 1:2 numerosity ratio (2 vs. 4, 4 vs. 8 and 8 vs. 16 fish) but failed to discriminate a 2:3 ratio (8 vs. 12 fish). In the second experiment, we studied the ability to discriminate between shoals that differed by one element; females were able to select the larger shoal when the paired numbers were 2 vs. 3 or 3 vs. 4 but not 4 vs. 5 or 5 vs. 6. Our study indicates that numerical abilities in fish are comparable with those of other non-verbal creatures studied; results are in agreement with the hypothesis of the existence of two distinct systems for quantity discrimination in vertebrates.
|
|
|
Akins, C. K., Klein, E. D., & Zentall, T. R. (2002). Imitative learning in Japanese quail (Coturnix japonica) using the bidirectional control procedure. Anim Learn Behav, 30(3), 275–281.
Abstract: In the bidirectional control procedure, observers are exposed to a conspecific demonstrator responding to a manipulandum in one of two directions (e.g., left vs. right). This procedure controls for socially mediated effects (the mere presence of a conspecific) and stimulus enhancement (attention drawn to a manipulandum by its movement), and it has the added advantage of being symmetrical (the two different responses are similar in topography). Imitative learning is demonstrated when the observers make the response in the direction that they observed it being made. Recently, however, it has been suggested that when such evidence is found with a predominantly olfactory animal, such as the rat, it may result artifactually from odor cues left on one side of the manipulandum by the demonstrator. In the present experiment, we found that Japanese quail, for which odor cues are not likely to play a role, also showed significant correspondence between the direction in which the demonstrator and the observer push a screen to gain access to reward. Furthermore, control quail that observed the screen move, when the movement of the screen was not produced by the demonstrator, did not show similar correspondence between the direction of screen movement observed and that performed by the observer. Thus, with the appropriate control, the bidirectional procedure appears to be useful for studying imitation in avian species.
|
|
|
Aust, U., & Huber, L. (2006). Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure. J Exp Psychol Anim Behav Process, 32(2), 190–195.
Abstract: Success in tasks requiring categorization of pictorial stimuli does not prove that a subject understands what the pictures stand for. The ability to achieve representational insight is by no means a trivial one because it exceeds mere detection of 2-D features present in both the pictorial images and their referents. So far, evidence for such an ability in nonhuman species is weak and inconclusive. Here, the authors report evidence of representational insight in pigeons. After being trained on pictures of incomplete human figures, the birds responded significantly more to pictures of the previously missing parts than to nonrepresentative stimuli, which demonstrates that they actually recognized the pictures' representational content.
|
|
|
Biederman, G. B., Robertson, H. A., & Vanayan, M. (1986). Observational learning of two visual discriminations by pigeons: a within-subjects design. J Exp Anal Behav, 46(1), 45–49.
Abstract: Pigeon's observational learning of successive visual discrimination was studied using within-subject comparisons of data from three experimental conditions. Two pairs of discriminative stimuli were used; each bird was exposed to two of the three experimental conditions, with different pairs of stimuli used in a given bird's two conditions. In one condition, observers were exposed to visual discriminative stimuli only. In a second condition, subjects were exposed to a randomly alternating sequence of two stimuli where the one that would subsequently be used as S+ was paired with the operation of the grain magazine. In a third experimental condition, subjects were exposed to the performance of a conspecific in the operant discrimination procedure. After exposures to conspecific performances, there was facilitation of discriminative learning, relative to that which followed exposures to stimulus and reinforcement sequences or exposures to stimulus sequences alone. Exposure to stimulus and food-delivery sequences enhanced performance relative to exposure to stimulus sequences alone. The differential effects of these three types of exposure were not attributable to order effects or to task difficulty; rather, they clearly were due to the type of exposure.
|
|
|
Bovet, D., Vauclair, J., & Blaye, A. (2005). Categorization and abstraction abilities in 3-year-old children: a comparison with monkey data. Anim. Cogn., 8(1), 53–59.
Abstract: Three-year-old children were tested on three categorization tasks of increasing levels of abstraction (used with adult baboons in an earlier study): the first was a conceptual categorization task (food vs toys), the second a perceptual matching task (same vs different objects), and the third a relational matching task in which the children had to sort pairs according to whether or not the two items belonged to the same or different categories. The children were tested using two different procedures, the first a replication of the procedure used with the baboons (pulling one rope for a category or a relationship between two objects, and another rope for the other category or relationship), the second a task based upon children's prior experiences with sorting objects (putting in the same box objects belonging to the same category or a pair of objects exemplifying the same relation). The children were able to solve the first task (conceptual categorization) when tested with the sorting into boxes procedure, and the second task (perceptual matching) when tested with both procedures. The children were able to master the third task (relational matching) only when the rules were clearly explained to them, but not when they could only watch sorting examples. In fact, the relational matching task without explanation requires analogy abilities that do not seem to be fully developed at 3 years of age. The discrepancies in performances between children tested with the two procedures, with the task explained or not, and the discrepancies observed between children and baboons are discussed in relation to differences between species and/or problem-solving strategies.
|
|
|
Boysen, S. T., Bernston, G. G., Hannan, M. B., & Cacioppo, J. T. (1996). Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes). J Exp Psychol Anim Behav Process, 22(1), 76–86.
Abstract: Five chimpanzees with training in counting and numerical skills selected between 2 arrays of different amounts of candy or 2 Arabic numerals. A reversed reinforcement contingency was in effect, in which the selected array was removed and the subject received the nonselected candies (or the number of candies represented by the nonselected Arabic numeral). Animals were unable to maximize reward by selecting the smaller array when candies were used as array elements. When Arabic numerals were substituted for the candy arrays, all animals showed an immediate shift to a more optimal response strategy of selecting the smaller numeral, thereby receiving the larger reward. Results suggest that a response disposition to the high-incentive candy stimuli introduced a powerful interference effect on performance, which was effectively overridden by the use of symbolic representations.
|
|
|
Call, J. (2006). Inferences by exclusion in the great apes: the effect of age and species. Anim. Cogn., 9(4), 393–403.
Abstract: This study investigated the ability of chimpanzees, gorillas, orangutans, and bonobos to make inferences by exclusion using the procedure pioneered by Premack and Premack (Cognition 50:347-362, 1994) with chimpanzees. Thirty apes were presented with two different food items (banana vs. grape) on a platform and covered with identical containers. One of the items was removed from the container and placed between the two containers so that subjects could see it. After discarding this item, subjects could select between the two containers. In Experiment 1, apes preferentially selected the container that held the item that the experimenter had not discarded, especially if subjects saw the experimenter remove the item from the container (but without seeing the container empty). Experiment 3 in which the food was removed from one of the containers behind a barrier confirmed these results. In contrast, subjects performed at chance levels when a stimulus (colored plastic chip: Exp. 1; food item: Exp. 2 and Exp. 3) designated the item that had been removed. These results indicated that apes made inferences, not just learned to use a discriminative cue to avoid the empty container. Apes perceived and treated the item discarded by the experimenter as if it were the very one that had been hidden under the container. Results suggested a positive relationship between age and inferential ability independent of memory ability but no species differences.
|
|
|
Clement, T. S., & Zentall, T. R. (2000). Development of a single-code/default coding strategy in pigeons. Psychol Sci, 11(3), 261–264.
Abstract: We tested the hypothesis that pigeons could use a cognitively efficient coding strategy by training them on a conditional discrimination (delayed symbolic matching) in which one alternative was correct following the presentation of one sample (one-to-one), whereas the other alternative was correct following the presentation of any one of four other samples (many-to-one). When retention intervals of different durations were inserted between the offset of the sample and the onset of the choice stimuli, divergent retention functions were found. With increasing retention interval, matching accuracy on trials involving any of the many-to-one samples was increasingly better than matching accuracy on trials involving the one-to-one sample. Furthermore, following this test, pigeons treated a novel sample as if it had been one of the many-to-one samples. The data suggest that rather than learning each of the five sample-comparison associations independently, the pigeons developed a cognitively efficient single-code/default coding strategy.
|
|
|
Clement, T. S., & Zentall, T. R. (2003). Choice based on exclusion in pigeons. Psychon Bull Rev, 10(4), 959–964.
Abstract: When humans acquire a conditional discrimination and are given a novel-sample-comparison choice, they often reject a comparison known to be associated with a different sample and choose the alternative comparison by default (or by exclusion). In Experiment 1, we found that if, following matching training, we replaced both of the samples, acquisition took five times longer than if we replaced only one of the samples. Apparently, the opportunity to reject one of the comparisons facilitated the association of the other sample with the remaining comparison. In Experiment 2, we first trained pigeons to treat two samples differently (to associate Sample A with Comparison 1 and Sample B with Comparison 2) and then trained them to associate one of those samples with a new comparison (e.g., Sample A with Comparison 3) and to associate a novel sample (Sample C) with a different, new comparison (Comparison 4). When Sample B then replaced Sample C, the pigeons showed a significant tendency to choose Comparison 4 over Comparison 3. Thus, when given the opportunity, pigeons will choose by exclusion.
|
|
|
Clement, T. S., Weaver, J. E., Sherburne, L. M., & Zentall, T. R. (1998). Simultaneous discrimination learning in pigeons: value of S- affects the relative value of its associated S+. Q J Exp Psychol B, 51(4), 363–378.
Abstract: In a simple simultaneous discrimination involving a positive stimulus (S+) and a negative stimulus (S-), it has been hypothesized that positive value can transfer from the S+ to the S- (thus increasing the relative value of the S-) and also that negative value can transfer from the S- to the S+ (thus diminishing the relative value of the S+; Fersen, Wynne, Delius, & Staddon, 1991). Evidence for positive value transfer has been reported in pigeons (e.g. Zentall & Sherburne, 1994). The purpose of the present experiments was to determine, in a simultaneous discrimination, whether the S- diminishes the value of the S+ or the S- is contrasted with the S+ (thus enhancing the value of the S+). In two experiments, we found evidence for contrast, rather than value transfer, attributable to simultaneous discrimination training. Thus, not only does the S+ appear to enhance the value of the S-, but the S- appears to enhance rather than reduce the value of the S+.
|
|