|
Crook, J. H. (1983). On attributing consciousness to animals. Nature, 303(5912), 11–14.
|
|
|
Griffin, D. R., & Speck, G. B. (2004). New evidence of animal consciousness. Anim. Cogn., 7(1), 5–18.
Abstract: This paper reviews evidence that increases the probability that many animals experience at least simple levels of consciousness. First, the search for neural correlates of consciousness has not found any consciousness-producing structure or process that is limited to human brains. Second, appropriate responses to novel challenges for which the animal has not been prepared by genetic programming or previous experience provide suggestive evidence of animal consciousness because such versatility is most effectively organized by conscious thinking. For example, certain types of classical conditioning require awareness of the learned contingency in human subjects, suggesting comparable awareness in similarly conditioned animals. Other significant examples of versatile behavior suggestive of conscious thinking are scrub jays that exhibit all the objective attributes of episodic memory, evidence that monkeys sometimes know what they know, creative tool-making by crows, and recent interpretation of goal-directed behavior of rats as requiring simple nonreflexive consciousness. Third, animal communication often reports subjective experiences. Apes have demonstrated increased ability to use gestures or keyboard symbols to make requests and answer questions; and parrots have refined their ability to use the imitation of human words to ask for things they want and answer moderately complex questions. New data have demonstrated increased flexibility in the gestural communication of swarming honey bees that leads to vitally important group decisions as to which cavity a swarm should select as its new home. Although no single piece of evidence provides absolute proof of consciousness, this accumulation of strongly suggestive evidence increases significantly the likelihood that some animals experience at least simple conscious thoughts and feelings. The next challenge for cognitive ethologists is to investigate for particular animals the content of their awareness and what life is actually like, for them.
|
|
|
Helton, W. S. (2005). Animal expertise, conscious or not. Anim. Cogn., 8(2), 67–74.
Abstract: Rossano (Cognition 89:207, 2003) proposes expertise as an indicator of consciousness in humans and other animals. Since there is strong evidence that the development of expertise requires deliberate practice (Ericsson in The road to excellence: the acquisition of expert performance in the arts and sciences, sports and games 1996), and deliberate practice appears to be outside of the bounds of unconscious processing, then any signs of expertise development in an animal are indicators of consciousness. Rossano's argument may lead to an unsolvable debate about animal consciousness while causing researchers to overlook the underlying reality of animal expertise. This article provides evidence indicative of animals meeting each of the three definitions of expertise established in the scientific literature: expertise as a social construction, expertise as exceptional performance, and expertise as knowledge. In addition, cases of deliberate practice by non-human animals are offered. Acknowledging some animals as experts, regardless of consciousness, is warranted by the research findings and would prove useful in solving many issues remaining in the human expertise literature.
|
|
|
Hillidge, C. J., & Lees, P. (1975). Cardiac output in the conscious and anaesthetised horse. Equine Vet J, 7(1), 16–21.
Abstract: Cardiac output in the horse was measured before and at predetermined times during 2-hour periods of thiopentone-halothane and thiopentone-diethyl ether anaesthesia. Left ventricular stroke volume was decreased to a similar extent during anaesthesia with each volatile agent, but a greater reduction in cardiac output occurred during halothane anaesthesia. This finding reflected the differing effects of halothane and ether on heart rate, a slight bradycardia occurring with the former agent while ether produced a small degree of tachycardia. The latter effect was attributed to enhanced sympathoadrenal activity. Changes in cardiac output and stroke volume were considered in relation to other factors, including arterial blood pH and tensions of oxygen and carbon dioxide. Positive correlations between some of these variables and cardiac function were established. With both volatile agents the reductions in stroke volume and cardiac output were related to the duration of anaesthesia, being greatest during the early stages. Possible reasons for the tendency of stroke volume and cardiac output to return towards control levels are discussed.
|
|
|
Morton, D. B. (2000). Self-consciousness and animal suffering. Biologist (London), 47(2), 77–80.
Abstract: Animals with relatively highly developed brains are likely to experience some degree of self-awareness and the ability to think. As well as being interesting in its own right, self-consciousness matters from an ethical point of view, since it can give rise to forms of suffering above and beyond the immediate physical sensations of pain or distress. This article surveys the evidence for animal self-consciousness and its implications for animal welfare.
|
|
|
Pennisi, E. (1999). Are out primate cousins 'conscious'? (Vol. 284).
|
|