|
Dougherty, D. M., & Lewis, P. (1991). Stimulus generalization, discrimination learning, and peak shift in horses. J Exp Anal Behav, 56(1), 97–104.
Abstract: Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms.
|
|
|
Ferguson, D. L., & Rosales-Ruiz, J. (2001). Loading the problem loader: the effects of target training and shaping on trailer-loading behavior of horses. J Appl Behav Anal, 34(4), 409–423.
Abstract: The purpose of this study was to develop an effective method for trailer loading horses based on principles of positive reinforcement. Target training and shaping were used to teach trailer-loading behavior to 5 quarter horse mares in a natural setting. All 5 had been trailer loaded before through the use of aversive stimulation. Successive approximations to loading and inappropriate behaviors were the dependent variables. After training a horse to approach a target, the target was moved to various locations inside the trailer. Horses started training on the left side of a two-horse trailer. After a horse was loading on the left side, she was moved to the right side, then to loading half on the right and half on the left. A limited-hold procedure and the presence of a companion horse seemed to facilitate training for 1 horse. Inappropriate behaviors fell to zero immediately after target training, and all the horses successfully completed the shaping sequence. Finally, these effects were observed to generalize to novel conditions (a different trainer and a different trailer).
|
|
|
Kaiser, D. H., Zentall, T. R., & Neiman, E. (2002). Timing in pigeons: effects of the similarity between intertrial interval and gap in a timing signal. J Exp Psychol Anim Behav Process, 28(4), 416–422.
Abstract: Previous research suggests that when a fixed interval is interrupted (known as the gap procedure), pigeons tend to reset memory and start timing from 0 after the gap. However, because the ambient conditions of the gap typically have been the same as during the intertrial interval (ITI), ambiguity may have resulted. In the present experiment, the authors found that when ambient conditions during the gap were similar to the ITI, pigeons tended to reset memory, but when ambient conditions during the gap were different from the ITI, pigeons tended to stop timing, retain the duration of the stimulus in memory, and add to that time when the stimulus reappeared. Thus, when the gap was unambiguous, pigeons timed accurately.
|
|
|
Nissani, M. (2006). Do Asian elephants (Elephas maximus) apply causal reasoning to tool-use tasks? J Exp Psychol Anim Behav Process, 32(1), 91–96.
Abstract: Two experiments addressed contradictory claims about causal reasoning in elephants. In Experiment 1, 4 Asian elephants (Elephas maximus) were pretrained to remove a lid from the top of a bucket and retrieve a food reward. Subsequently, in the first 5 critical trials, when the lid was placed alongside the bucket and no longer obstructed access to the reward, each elephant continued to remove the lid before retrieving the reward. Experiment 2, which involved 11 additional elephants and variations of the original design, yielded similarly counterintuitive observations. Although the results are open to alternative interpretations, they appear more consistent with associative learning than with causal reasoning. Future applications of Fabrean methodologies (J. H. Fabre, 1915) to animal cognition are proposed.
|
|
|
Shanahan, S. (2003). Trailer loading stress in horses: behavioral and physiological effects of nonaversive training (TTEAM). J Appl Anim Welf Sci, 6(4), 263–274.
Abstract: Resistance in the horse to trailer loading is a common source of stress and injury to horses and their handlers. The objective of this study was to determine whether nonaversive training based on the Tellington-Touch Equine Awareness Method (TTEAM; Tellington-Jones &Bruns, 1988) would decrease loading time and reduce stress during loading for horses with a history of reluctance to load. Ten horses described by their owners as “problem loaders” were subjected to pretraining and posttraining assessments of loading. Each assessment involved two 7-min loading attempts during which heart rate and saliva cortisol were measured. The training consisted of six 30-min sessions over a 2-week period during which the horse and owner participated in basic leading exercises with obstacles simulating aspects of trailering. Assessment showed heart rate and saliva cortisol increased significantly during loading as compared to baseline (p <.001 and p <.05, respectively). Reassessment after training showed a decrease in loading time (p <.02), reduced heart rate during loading (p <.002), and reduced saliva cortisol as compared to pretraining assessments. Seven “good loaders” also were subject to loading assessment for physiological comparison. Increases in heart rate during loading were significantly higher in the good loaders (p <.001). Nonaversive training simulating aspects of loading may effectively reduce loading time and stress during loading for horses with a history of resistance to trailer loading.
|
|
|
Weatherly, J. N., Arthur, E. I. L., & Tischart, L. M. (2003). Altering “motivational” variables alters induction produced by upcoming food-pellet reinforcement. Anim. Cogn., 6(1), 17–26.
Abstract: Previous research has demonstrated that rats will increase their rates of lever pressing for sucrose rewards in the first half of an experimental session when food pellets, rather than the same sucrose, continually serve as the reward in the second half of the session. This effect has been coined induction, and the present study investigated whether it could be altered by altering “motivational” variables. Experiment 1 manipulated subjects' motivation by altering, across conditions, their level of food deprivation. Predictably, the size of induction varied directly with level of deprivation. Experiments 2 and 3 manipulated subjects' motivation by feeding them food pellets and sucrose, respectively, prior to their responding in the experimental session. These pre-session feedings decreased the size of the observed induction in both experiments. The results from the present study indicate that the size of induction is correlated with subjects' motivation to respond for the available reinforcers. They are also consistent with the idea that operant processes underlie the effect. The notion that induction might encompass the concept of “anticipation” is also discussed.
|
|
|
Zentall, T. R., Kaiser, D. H., Clement, T. S., Weaver, J. E., & Campbell, G. (2000). Presence/absence-sample matching by pigeons: divergent retention functions may result from the similarity of behavior during the absence sample and the retention interval. J Exp Psychol Anim Behav Process, 26(3), 294–304.
Abstract: Divergent choose-absence retention functions typically found in pigeons following presence/absence-sample matching have been attributed to the development of a single-code/default coding strategy. However, such effects may result from adventitious differential responding to the samples. In Experiment 1, retention functions were divergent only when differential sample responding could serve as the basis for comparison choice. In Experiment 2, when pecking did not occur during the retention interval, a choose-absence bias was found, but when pecking occurred during the retention interval, a choose-presence bias resulted. In Experiment 3, positive transfer was found when a stimulus associated with the absence of pecking replaced the absence sample but not when a stimulus associated with pecking replaced the presence sample. Thus, presence/absence-sample matching may not encourage the development of a single-code/default coding strategy in pigeons.
|
|