|
Gácsi, M., Kara, E., Belényi, B., Topál, J., & Miklósi, Á. (2009). The effect of development and individual differences in pointing comprehension of dogs. Anim. Cogn., 12(3), 471–479.
Abstract: In spite of the rather different procedures actually used in comparative studies to test the ability of different species to rely on the human pointing gesture, there is no debate on the high performance of dogs in such tasks. Very little is known, however, on the course through which they acquire this ability or the probable factors influencing the process. Important developmental questions have remained unsolved and also some methodological concerns should be addressed before we can convincingly argue for one interpretation or another. In this study we tested 180 dogs of different age (from 2 months to adults) to investigate their performance in the human distal momentary pointing gesture. The results, analyzed at both the group and the individual levels, showed no difference in the performance according to age, indicating that in dogs the comprehension of the human pointing may require only very limited and rapid early learning to fully develop. Interestingly, neither the keeping conditions nor the time spent in active interaction with the owner, and not even some special (agility) training for using human visual cues, had significant effect on the success and explained individual differences. The performance of the dogs was rather stable over time: during the 20 trials within a session and even when subsamples of different age were repeatedly tested. Considering that in spite of the general success at the group level, more than half of the dogs were not successful at the individual level, we revealed alternative “decision-making rules” other than following the pointing gesture of the experimenter.
|
|
|
Huber, L., & Gajdon, G. K. (2006). Technical intelligence in animals: the kea model. Anim. Cogn., 9(4), 295–305.
Abstract: The ability to act on information flexibly is one of the cornerstones of intelligent behavior. As particularly informative example, tool-oriented behavior has been investigated to determine to which extent nonhuman animals understand means-end relations, object affordances, and have specific motor skills. Even planning with foresight, goal-directed problem solving and immediate causal inference have been a focus of research. However, these cognitive abilities may not be restricted to tool-using animals but may be found also in animals that show high levels of curiosity, object exploration and manipulation, and extractive foraging behavior. The kea, a New Zealand parrot, is a particularly good example. We here review findings from laboratory experiments and field observations of keas revealing surprising cognitive capacities in the physical domain. In an experiment with captive keas, the success rate of individuals that were allowed to observe a trained conspecific was significantly higher than that of naive control subjects due to their acquisition of some functional understanding of the task through observation. In a further experiment using the string-pulling task, a well-probed test for means-end comprehension, we found the keas finding an immediate solution that could not be improved upon in nine further trials. We interpreted their performance as insightful in the sense of being sensitive of the relevant functional properties of the task and thereby producing a new adaptive response without trial-and-error learning. Together, these findings contribute to the ongoing debate on the distribution of higher cognitive skills in the animal kingdom by showing high levels of sensorimotor intelligence in animals that do not use tools. In conclusion, we suggest that the 'Technical intelligence hypothesis' (Byrne, Machiavellian intelligence II: extensions and evaluations, pp 289-211, 1997), which has been proposed to explain the origin of the ape/monkey grade-shift in intelligence by a selection pressure upon an increased efficiency in foraging behavior, should be extended, that is, applied to some birds as well.
|
|
|
Pepperberg, I. M. (2006). Grey parrot numerical competence: a review. Anim. Cogn., 9(4), 377–391.
Abstract: The extent to which humans and nonhumans share numerical competency is a matter of debate. Some researchers argue that nonhumans, lacking human language, possess only a simple understanding of small quantities, generally less than four. Animals that have, however, received some training in human communication systems might demonstrate abilities intermediate between those of untrained nonhumans and humans. Here I review data for a Grey parrot (Psittacus erithacus) that has been shown to quantify sets of up to and including six items (including heterogeneous subsets) using vocal English labels, to comprehend these labels fully, and to have a zero-like concept. Recent research demonstrates that he can also sum small quantities. His success shows that he understands number symbols as abstract representations of real-world collections, and that his sense of number compares favorably to that of chimpanzees and young human children.
|
|
|
Topál, J., Byrne, R. W., Miklósi, Á., & Csányi, V. (2006). Reproducing human actions and action sequences: “Do as I Do!” in a dog. Anim. Cogn., 9(4), 355–367.
Abstract: We present evidence that a dog (Philip, a 4-year-old tervueren) was able to use different human actions as samples against which to match his own behaviour. First, Philip was trained to repeat nine human-demonstrated actions on command ('Do it!'). When his performance was markedly over chance in response to demonstration by one person, testing with untrained action sequences and other demonstrators showed some ability to generalise his understanding of copying. In a second study, we presented Philip with a sequence of human actions, again using the 'Do as I do' paradigm. All demonstrated actions had basically the same structure: the owner picked up a bottle from one of six places; transferred it to one of the five other places and then commanded the dog ('Do it!'). We found that Philip duplicated the entire sequence of moving a specific object from one particular place to another more often than expected by chance. Although results point to significant limitations in his imitative abilities, it seems that the dog could have recognized the action sequence, on the basis of observation alone, in terms of the initial state, the means, and the goal. This suggests that dogs might acquire abilities by observation that enhance their success in complex socio-behavioural situations.
|
|
|
Weir, A. A. S., & Kacelnik, A. (2006). A New Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminium strips. Anim. Cogn., 9(4), 317–334.
Abstract: Previous observations of a New Caledonian crow (Corvus moneduloides) spontaneously bending wire and using it as a hook [Weir et al. (2002) Science 297:981] have prompted questions about the extent to which these animals 'understand' the physical causality involved in how hooks work and how to make them. To approach this issue we examine how the same subject (“Betty”) performed in three experiments with novel material, which needed to be either bent or unbent in order to function to retrieve food. These tasks exclude the possibility of success by repetition of patterns of movement similar to those employed before. Betty quickly developed novel techniques to bend the material, and appropriately modified it on four of five trials when unbending was required. She did not mechanically apply a previously learned set of movements to the new situations, and instead sought new solutions to each problem. However, the details of her behaviour preclude concluding definitely that she understood and planned her actions: in some cases she probed with the unmodified tools before modifying them, or attempted to use the unmodified (unsuitable) end of the tool after modification. Gauging New Caledonian crows' level of understanding is not yet possible, but the observed behaviour is consistent with a partial understanding of physical tasks at a level that exceeds that previously attained by any other non-human subject, including apes.
|
|