|
Schino, G., di Sorrentino, E. P., & Tiddi, B. (2007). Grooming and coalitions in Japanese macaques (<em>Macaca fuscata</em>): Partner choice and the time frame reciprocation. Journal of Comparative Psychology, 121(2), 181–188.
Abstract: Evidence of a reciprocal exchange of grooming and agonistic support in primates is mixed. In this study, the authors analyzed a large database of grooming and coalitions in captive female Japanese macaques (Macaca fuscata) to investigate their within-group distribution and temporal relations. Macaques groomed preferentially those individuals that groomed them most and supported preferentially those individuals that supported them most. They also supported preferentially those individuals that groomed them most and groomed preferentially those individuals that supported them most. These results were not explained by covariation of grooming and support with third variables such as kinship, rank, or time spent in proximity. However, receiving grooming did not increase the short-term probability of supporting a partner, and being supported did not increase the short-term probability of grooming a partner. The proximate mechanisms underlying the exchange of services were discussed in relation to the time frame of the behavioral choices made by the monkeys. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
|
|
|
Seyfarth, R. M., & Cheney, D. L. (1984). Grooming, alliances and reciprocal altruism in vervet monkeys. Nature, 308(5959), 541–543.
Abstract: Reciprocal altruism refers to the exchange of beneficial acts between individuals, in which the benefits to the recipient exceed the cost to the altruist. Theory predicts that cooperation among unrelated animals can occur whenever individuals encounter each other regularly and are capable of adjusting their cooperative behaviour according to experience. Although the potential for reciprocal altruism exists in many animal societies, most interactions occur between closely related individuals, and examples of reciprocity among non-kin are rare. The field experiments on vervet monkeys which we present here demonstrate that grooming between unrelated individuals increases the probability that they will subsequently attend to each others' solicitations for aid. Vervets appear to be more willing to aid unrelated individuals if those individuals have behaved affinitively toward them in the recent past. In contrast, recent grooming between close genetic relatives appears to have no effect on their willingness to respond to each other's solicitations for aid.
|
|
|
Suzuki, Y., & Toquenaga, Y. (2005). Effects of information and group structure on evolution of altruism: analysis of two-score model by covariance and contextual analyses. J. Theor. Biol., 232(2), 191–201.
Abstract: An altruistic individual has to gamble on cooperation to a stranger because it does not know whether the stranger is trustworthy before direct interaction. Nowak and Sigmund (Nature 393 (1998a) 573; J. Theor. Biol. 194 (1998b) 561) presented a new theoretical framework of indirect reciprocal altruism by image scoring game where all individuals are informed about a partner's behavior from its image score without direct interaction. Interestingly, in a simplified version of the image scoring game, the evolutionarily stability condition for altruism became a similar form of Hamilton's rule, i.e. inequality that the probability of getting correct information is more than the ratio of cost to benefit. Since the Hamilton's rule was derived by evolutionarily stable analysis, the evolutionary meaning of the probability of getting correct information has not been clearly examined in terms of kin and group selection. In this study, we applied covariance analysis to the two-score model for deriving the Hamilton's rule. We confirmed that the probability of getting correct information was proportional to the bias of altruistic interactions caused by using information about a partner's image score. The Hamilton's rule was dependent on the number of game bouts even though the information reduced the risk of cooperation to selfish one at the first encounter. In addition, we incorporated group structure to the two-score model to examine whether the probability of getting correct information affect selection for altruism by group selection. We calculated a Hamilton's rule of group selection by contextual analysis. Group selection is very effective when either the probability of getting correct information or that of future interaction, or both are low. The two Hamilton's rules derived by covariance and contextual analyses demonstrated the effects of information and group structure on the evolution of altruism. We inferred that information about a partner's behavior and group structure can produce flexible pathways for the evolution of altruism.
|
|