|
Crowell-Davis, S. L., & Houpt, K. A. (1985). Coprophagy by foals: effect of age and possible functions. Equine Vet J, 17(1), 17–19.
Abstract: In colts and fillies observed from birth to 24 weeks old, coprophagy occurred from Weeks 1 to 19. Its frequency was greatest during the first two months. Coprophagy was rarely observed in mares and stallions. Foals usually ate the faeces of their mother but were observed to eat their own and those of a stallion and another unrelated mare. Urination by the foal occurred before, during or after 26 per cent of the coprophagy incidents. It is hypothesised that foals may consume faeces in response to a maternal pheromone which signals the presence of deoxycholic acid or other acids which the foal may be deficient in and which it may require for gut immuno-competence myelination of the nervous system. Such a pheromone may also serve to accelerate growth and sexual maturation. Coprophagy may also provide nutrients and introduce normal bacterial flora to the gut.
|
|
|
Lee, R. D. (2003). Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. Proc Natl Acad Sci U S A, 100(16), 9637–9642.
Abstract: The classic evolutionary theory of aging explains why mortality rises with age: as individuals grow older, less lifetime fertility remains, so continued survival contributes less to reproductive fitness. However, successful reproduction often involves intergenerational transfers as well as fertility. In the formal theory offered here, age-specific selective pressure on mortality depends on a weighted average of remaining fertility (the classic effect) and remaining intergenerational transfers to be made to others. For species at the optimal quantity-investment tradeoff for offspring, only the transfer effect shapes mortality, explaining postreproductive survival and why juvenile mortality declines with age. It also explains the evolution of lower fertility, longer life, and increased investments in offspring.
|
|