Burla, J. - B., Siegwart, J., & Nawroth, C. (2018). Human Demonstration Does Not Facilitate the Performance of Horses (Equus caballus) in a Spatial Problem-Solving Task. Animal, 8(6), 96.
Abstract: Horses’ ability to adapt to new environments and to acquire new information plays an important role in handling and training. Social learning in particular would be very adaptive for horses as it enables them to flexibly adjust to new environments. In the context of horse handling, social learning from humans has been rarely investigated but could help to facilitate management practices. We assessed the impact of human demonstration on the spatial problem-solving abilities of horses during a detour task. In this task, a bucket with a food reward was placed behind a double-detour barrier and 16 horses were allocated to two test groups of 8 horses each. One group received a human demonstration of how to solve the spatial task while the other group received no demonstration. We found that horses did not solve the detour task more often or faster with human demonstration. However, both test groups improved rapidly over trials. Our results suggest that horses prefer to use individual rather than social information when solving a spatial problem-solving task
|
|
Seyfarth, R. M., & Cheney, D. L. (2015). Social cognition. Animal Behaviour, 103, 191–202.
Abstract: The social intelligence hypothesis argues that competition and cooperation among individuals have shaped the evolution of cognition in animals. What do we mean by social cognition? Here we suggest that the building blocks of social cognition are a suite of skills, ordered roughly according to the cognitive demands they place upon individuals. These skills allow an animal to recognize others by various means; to recognize and remember other animals' relationships; and, perhaps, to attribute mental states to them. Some skills are elementary and virtually ubiquitous in the animal kingdom; others are more limited in their taxonomic distribution. We treat these skills as the targets of selection, and assume that more complex levels of social cognition evolve only when simpler methods are inadequate. As a result, more complex levels of social cognition indicate greater selective pressures in the past. The presence of each skill can be tested directly through field observations and experiments. In addition, the same methods that have been used to compare social cognition across species can also be used to measure individual differences within species and to test the hypothesis that individual differences in social cognition are linked to differences in reproductive success.
|
|
Brubaker, L., & Udell, M. A. R. (2016). Cognition and learning in horses (Equus caballus): What we know and why we should ask more. Behavioural Processes, 126, 121–131.
Abstract: Abstract Horses (Equus caballus) have a rich history in their relationship with humans. Across different cultures and eras they have been utilized for work, show, cultural rituals, consumption, therapy, and companionship and continue to serve in many of these roles today. As one of the most commonly trained domestic animals, understanding how horses learn and how their relationship with humans and other horses impacts their ability to learn has implications for horse welfare, training, husbandry and management. Given that unlike dogs and cats, domesticated horses have evolved from prey animals, the horse-human relationship poses interesting and unique scientific questions of theoretical value. There is still much to be learned about the cognition and behaviour of horses from a scientific perspective. This review explores current research within three related areas of horse cognition: human-horse interactions, social learning and independent learning in horses. Research on these topics is summarized and suggestions for future research are provided.
|
|
Defolie, C., Malassis, R., Serre, M., & Meunier, H. (2015). Tufted capuchins (Cebus apella) adapt their communicative behaviour to human’s attentional states. Anim. Cogn., 18(3), 747–755.
Abstract: Animal communication has become a widely studied field of research, especially because of the associated debates on the origin of human language. Due to their phylogenetic proximity with humans, non-human primates represent a suitable model to investigate the precursors of language. This study focuses on the perception of the attentional states of others, an important prerequisite to intentional communication. We investigated whether capuchins (Cebus apella) produce a learnt pointing gesture towards a hidden and unreachable food reward as a function of the attentional status of the human experimenter. For that purpose, we tested five subjects that we first trained to indicate by a pointing gesture towards the human partner the position of a reward hidden by an assistant. Then, capuchins were tested in two experimental conditions randomly ordered. In the first condition—motivation trial—the experimenter was attentive to the subject gestures and rewarded him immediately when it pointed towards the baited cylinder. During the second condition—test trial—the experimenter adopted one of the following attention states and the subject was rewarded after 10 s has elapsed, regardless of the subject’s behaviour. Five attentional states were tested: (1) experimenter absent, (2) experimenter back to the monkey, (3) experimenter’s head away, (4) experimenter watching above the monkey, and (5) experimenter watching the monkey face. Our results reveal a variation in our subjects’ communicative behaviours with a discrimination of the different postural clues (body and head orientation) available in our experimental conditions. This study suggests that capuchins can flexibly use a communicative gesture to adapt to the attentional state of their partner and provides evidence that acquired communicative gestures of monkeys might be used intentionally.
|
|
Kaminski, J., Pitsch, A., & Tomasello, M. (2013). Dogs steal in the dark. Animal Cognition, 16(3), 385–394.
Abstract: All current evidence of visual perspective taking in dogs can possibly be explained by dogs reacting to certain stimuli rather than understanding what others see. In the current study, we set up a situation in which contextual information and social cues are in conflict. A human always forbade the dog from taking a piece of food. The part of the room being illuminated was then varied, for example, either the area where the human was seated or the area where the food was located was lit. Results show that dogs steal significantly more food when it is dark compared to when it is light. While stealing forbidden food the dog’s behaviour also depends on the type of illumination in the room. Illumination around the food, but not the human, affected the dogs’ behaviour. This indicates that dogs do not take the sight of the human as a signal to avoid the food. It also cannot be explained by a low-level associative rule of avoiding illuminated food which dogs actually approach faster when they are in private. The current finding therefore raises the possibility that dogs take into account the human’s visual access to the food while making their decision to steal it.
|
|