Suagee-Bedore, J. K., Linden, D. R., & Bennett-Wimbush, K. (2021). Effect of Pen Size on Stress Responses of Stall-Housed Horses Receiving One Hour of Daily Turnout. J. Equine Vet. Sci., 98, 103366.
Abstract: Group turnout provides important socializing opportunities for horses, particularly those that are primarily stalled. A high percentage of equine injuries occur during group turnout, which could partly be due to the physical constraints of fencing. To investigate appropriate paddock sizes for group turnouts, horses (n = 12) from a single herd were divided into groups of 4, stalled for 24 hours, and then turned out for 1 hour into one of three differently sized pens: 342, 263, and 184 m2 per horse. Groups rotated through pens across 3 days, receiving one treatment per day. Blood was sampled for cortisol concentrations at 08:00 hours each morning, and then at 15 and 60 minutes into the turn out sessions, and 60 minutes after return to individual stalls. Groups rotated through three turnout times: 09:00, 12:00, 14:00 hours. Counts of agonistic behaviors (chasing, contact biting, and kicking) and low-level threats (pinned ears, tail swishing, bite and kick threats) were recorded. When turned out in pens that provided 342 m2 per horse, horses exhibited reduced plasma cortisol concentrations by 15 minutes after turnout and at 1 hour after return to their stalls (P < .05). Horses in pens providing 184 m2 per horse exhibited greater agonistic (P < .001) and low-level threat (P < .01) behaviors than horses in larger pens. These data provide insight into appropriate pen sizes for horses from established herds. Providing at least 342 m2 per horse may reduce the chance of injury in horses accustomed to group turnout.
|
|
Christensen, J. W., Søndergaard, E., Thodberg, K., & Halekoh, U. (2011). Effects of repeated regrouping on horse behaviour and injuries. Appl. Anim. Behav. Sci., 133(3), 199–206.
Abstract: Domestic horses are faced with social challenges throughout their lives due to limitations in social contact, space restrictions and frequent changes in social companionship. This is in contrast to natural conditions where horses live in relatively stable harem bands. Currently, little is known about how repeated regrouping affect horse behaviour and welfare, and it is unknown whether horses may adapt to regrouping. In this study, we aimed to investigate the effects of an unstable group structure, caused by weekly regroupings, on behaviour and frequency of injuries in young horses. Forty-five horses were included in the study and were randomly assigned to the treatments; Stable (S; seven groups of three horses) or Unstable (U; eight groups of three horses). The experimental period lasted 7 weeks, during which horses in Stable groups remained in the same group, whereas one horse was exchanged between Unstable groups every week. The groups were kept in 80m×80m grass-covered enclosures and were fed additional roughage on the ground daily. Social interactions were recorded in Unstable groups immediately after each regrouping (30min), and in both Stable and Unstable groups on day 1, 3 and 6 after each regrouping (2×20min/group/day). Injuries were scored by the end of the experimental period. The level of aggression shown by horses in Unstable groups immediately after regrouping was not affected by week (F5,35=0.42, P=0.83), indicating that horses neither habituated, nor sensitized, to repeated regrouping. Compared to horses in Stable groups, more agonistic behaviour was shown by horses in Unstable groups (i.e. non-contact agonistic; F1,65=5.60, P=0.02), whereas there was no treatment effect on other variables. The level of play behaviour appeared, however, to be more variable in Unstable groups. There was a significant effect of week on the level of contact agonistic interactions as well as greeting behaviour, due to a high occurrence in weeks 4-6. Non-contact agonistic interactions constituted the major part of agonistic interactions (66%). Possibly as consequence, no serious injuries were registered and there was no treatment effect (U=184; P=0.11). We conclude that the behaviour of young horses is affected by group management, and that horses appear not to adapt to weekly regroupings.
|
|
A. Wiggins, & K. Crowston. (2011). From Conservation to Crowdsourcing: A Typology of Citizen Science. In 2011 44th Hawaii International Conference on System Sciences (pp. 1–10). 2011 44th Hawaii International Conference on System Sciences.
Abstract: Citizen science is a form of research collaboration involving members of the public in scientific research projects to address real-world problems. Often organized as a virtual collaboration, these projects are a type of open movement, with collective goals addressed through open participation in research tasks. Existing typologies of citizen science projects focus primarily on the structure of participation, paying little attention to the organizational and macrostructural properties that are important to designing and managing effective projects and technologies. By examining a variety of project characteristics, we identified five types-Action, Conservation, Investigation, Virtual, and Education- that differ in primary project goals and the importance of physical environment to participation.
|
|
Boogert, N. J., Reader, S. M., Hoppitt, W., & Laland, K. N. (2008). The origin and spread of innovations in starlings. Anim. Behav., 75(4), 1509–1518.
Abstract: There are numerous reports of novel learned behaviour patterns in animal populations, yet the factors influencing the invention and spread of these innovations remain poorly understood. Here we investigated to what extent the pattern of spread of innovations in captive groups of starlings, Sturnus vulgaris, could be predicted by knowledge of individual and social group variables, including association patterns, social rank orders, measures of neophobia and asocial learning performance. We presented small groups of starlings with a series of novel extractive foraging tasks and recorded the latency for each bird to contact and solve each task, as well as the orders of contacting and solving. We then explored which variables best predicted the observed diffusion patterns. Object neophobia and social rank measures characterized who was the first of the group to contact the novel foraging tasks, and the subsequent spread of contacting tasks was associated with latency to feed in a novel environment. Asocial learning performance, measured in isolation, predicted who was the first solver of the novel foraging tasks in each group. Association patterns did not predict the spread of solving. Contact latency and solving duration were negatively correlated, consistent with social learning underlying the spread of solving. Our findings indicate that we can improve our understanding of the diffusion dynamics of innovations in animal groups by investigating group-dependent and individual variables in combination. We introduce novel methods for exploring predictors of the origin and spread of behavioural innovations that could be widely applied.
|
|
Krueger, K., Schneider, G., Flauger, B., & Heinze, J. (2015). Context-dependent third-party intervention in agonistic encounters of male Przewalski horses. Behav. Process., 121, 54–62.
Abstract: Abstract One mechanism to resolve conflict among group members is third party intervention, for which several functions, such as kin protection, alliance formation, and the promotion of group cohesion have been proposed. Still, empirical research on the function of intervention behaviour is rare. We studied 40 cases of intervention behaviour in a field study on 13 semi-wild bachelor horses (Equus ferus przewalskii) in (a) standard social situations, and (b) when new horses joined the group (i.e. introductions). Only interventions in agonistic encounters were analysed. Eight of 13 animals directed intervention behaviour toward threatening animal in agonistic encounters of group members. One stallion was particularly active. The stallions did not intervene to support former group mates or kin and interventions were not reciprocated. In introduction situations and in standard social situations, the interveners supported animals which were lower in rank, but targeted, threatening animals of comparable social rank. After introductions, stallions received more affiliative behaviour from animals they supported and thus appeared to intervene for alliance formation. In standard social situations, interveners did not receive more affiliative behaviour from animals they supported and may primarily have intervened to promote group cohesion and to reduce social disruption within the group.
|
|