Goodwin, D. (1999). The importance of ethology in understanding the behaviour of the horse. Equine Veterinary Journal, 31(S28), 15–19.
Abstract: Summary Domestication has provided the horse with food, shelter, veterinary care and protection, allowing individuals an increased chance of survival. However, the restriction of movement, limited breeding opportunities and a requirement to expend energy, for the benefit of another species, conflict with the evolutionary processes which shaped the behaviour of its predecessors. The behaviour of the horse is defined by its niche as a social prey species but many of the traits which ensured the survival of its ancestors are difficult to accommodate in the domestic environment. There has been a long association between horses and man and many features of equine behaviour suggest a predisposition to interspecific cooperation. However, the importance of dominance in human understanding of social systems has tended to overemphasise its importance in the human-horse relationship. The evolving horse-human relationship from predation to companionship, has resulted in serial conflicts of interest for equine and human participants. Only by understanding the nature and origin of these conflicts can ethologists encourage equine management practices which minimise deleterious effects on the behaviour of the horse.
|
|
Kruska, D. C. T. (2014). Comparative quantitative investigations on brains of wild cavies (Cavia aperea) and guinea pigs (Cavia aperea f. porcellus). A contribution to size changes of CNS structures due to domestication. Mamm Biol, 79(4), 230–239.
Abstract: Intraspecific allometric calculations of the brain to body size relation revealed distinct differences between 127 (67; 60) ancestral wild cavies and 82 (37; 45) guinea pigs, their domesticated relatives. The dependency of both measures from one another remained the same in both animal groups but the brains of guinea pigs were by 14.22% smaller at any net body weight. Consistent with results in other species the domestication of Cavia aperea is also characterized by a decrease of brain size. Fresh tissue sizes of the five brain parts medulla oblongata, cerebellum, mesencephalon, diencephalon and telencephalon were determined for 6 cavies and 6 guinea pigs by the serial section method. Additionally the sizes of 16 endbrain structures and those of the optic tract, the lateral geniculate body and the cochlear nucleus were measured. Different decrease values resulted for all these structures concomitant with domestication as was calculated from the amount of total brain size decrease and average relative structure values in the wild as well as the domesticated brain. The size decrease of the entire telencephalon (-13.7%) was within the range of the mean overall reduction as similarly was the case for the total neocortex (-10.7%) whereas the total allocortex (-20.9%) clearly was more strongly affected. The size decrease of the olfactory bulb (-41.9%) was extreme and clearly higher than found for the secondary olfactory structures (around -11%). The primary nuclei of other sensory systems (vision, audition) were decreased to less extent (lateral geniculate: -18.1%; cochlear nucleus: -12.6%). Mass decreases of pure white matter parts were nearly twice as high in contrast to associated grey matter parts (neocortex white versus grey matter; tractus opticus versus lateral geniculate body). The relatively great decrease values found for the limbic structures hippocampus (-26.9%) and schizocortex (-25.9%) are especially notable since they are in good conformity with domestication effects in other mammalian species. The findings of this study are discussed with regard to results of similar investigations on wild and domesticated gerbils (Meriones unguiculatus), the encephalization of the wild form, the special and species-specific mode and duration of domestication and in connection with certain behavioral changes as resulted from comparative investigations in ethology, socio-biology, endocrinology and general physiology.
|
|
Price, E. O. (1999). Behavioral development in animals undergoing domestication. App Anim Behav Sci, 65(3), 245–271.
Abstract: The process of domestication involves adaptation, usually to a captive environment. Domestication is attained by some combination of genetic changes occurring over generations and developmental mechanisms (e.g., physical maturation, learning) triggered by recurring environmental events or management practices in captivity that influence specific biological traits. The transition from free-living to captive status is often accompanied by changes in availability and/or accessibility of shelter, space, food and water, and by changes in predation and the social environment. These changes set the stage for the development of the domestic phenotype. Behavioral development in animals undergoing domestication is characterized by changes in the quantitative rather than qualitative nature of responses. The hypothesized loss of certain behavior patterns under domestication can usually be explained by the heightening of response thresholds. Increases in response frequency accompanying domestication can often be explained by atypical rates of exposure to certain forms of perceptual and locomotor stimulation. Genetic changes influencing the development of the domestic phenotype result from inbreeding, genetic drift, artificial selection, natural selection in captivity, and relaxed selection. Experiential contributions to the domestic phenotype include the presence or absence of key stimuli, changes in intraspecific aggressive interactions and interactions with humans. Man's role as a buffer between the animal and its environment is also believed to have an important effect on the development of the domestic phenotype. The domestication process has frequently reduced the sensitivity of animals to changes in their environment, perhaps the single-most important change accompanying domestication. It has also resulted in modified rates of behavioral and physical development. Interest in breeding animals in captivity for release in nature has flourished in recent decades. The capacity of domestic animals to survive and reproduce in nature may depend on the extent to which the gene pool of the population has been altered during the domestication process and flexibility in behavioral development. “Natural” gene pools should be protected when breeding wild animals in captivity for the purpose of reestablishing free-living natural populations. In some cases, captive-reared animals must be conditioned to live in nature prior to their release.
|
|
Keil, N. M., Sambraus, H.H. (1998). “Intervenors” in agonistic interactions amongst domesticated goats. Z. Säugetierk., 63(5), 266–272.
Abstract: Social behaviour was observed in individually marked goats in two herds. The goats from one herd (n = 98) were horned, those of the other herd (n = 83) were polled. By recording agonistic interactions within the herds, a dominance index was determined for each animal. In both herds, intervention took place. Intervention is defined as one animal pushing in between two fighters, and thus ending the fight. More cases of intervention took place per individual animal amongst the horned goats than amongst the polled ones. Goats which intervened in fights on several occasions usually had a high dominance index. Members of the herd which were observed intervening only once had an average dominance index in both herds of almost 0.5. In some cases, goats very low in the rank order intervened a fight. Only rarely did the intervenors have a lower dominance index than the two fighters. In 103 cases, the direct dominance relationship between a fighting animal and the intervenor was known. In 95 cases (92.2%), the intervenor was dominant to the herd member in this fight and in just eight cases (7.8%), it was subordinate. It could not be determined what advantage the intervenor gained from its activity. It is possible that, at least in certain cases, a particularly relationship existed between the intervenor and one of the fighters.
|
|
Smith, B., & Litchfield, C. (2010). Dingoes (Canis dingo) can use human social cues to locate hidden food. Anim. Cogn., 13(2), 367–376.
Abstract: Abstract There is contention concerning the role that domestication plays in the responsiveness of canids to human social cues, with most studies investigating abilities of recognized domestic dog breeds or wolves. Valuable insight regarding the evolution of social communication with humans might be gained by investigating Australian dingoes, which have an early history of domestication, but have been free-ranging in Australia for approximately 3500–5000 years. Seven ‘pure’ dingoes were tested outdoors by a familiar experimenter using the object-choice paradigm to determine whether they could follow nine human communicative gestures previously tested with domestic dogs and captive wolves. Dingoes passed all cues significantly above control, including the “benchmark” momentary distal pointing, with the exception of gaze only, gaze and point, and pointing from the incorrect location. Dingo performance appears to lie somewhere between wolves and dogs, which suggests that domestication may have played a role in their ability to comprehend human gestures.
|
|