Yokoyama, S., & Radlwimmer, F. B. (1999). The molecular genetics of red and green color vision in mammals. Genetics, 153(2), 919–932.
Abstract: To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
|
|
Barker, S. C. (2003). The Australian paralysis tick may be the missing link in the transmission of Hendra virus from bats to horses to humans. Med Hypotheses, 60(4), 481–483.
Abstract: Hendra virus is a new virus of the family Paramyxoviridae. This virus was first detected in Queensland, Australia, in 1994; although, it seems that the virus has infected fruit-eating bats (flying-foxes) for a very long time. At least 2 humans and 15 horses have been killed by this virus since it first emerged as a virus that may infect mammals other than flying-foxes. Hendra virus is thought to have moved from flying-foxes to horses, and then from horses to people. There is a reasonably strong hypothesis for horse-to-human transmission: transmission of virus via nasal discharge, saliva and/or urine. In contrast, there is no strong hypothesis for flying-fox-to-human transmission. I present evidence that the Australian paralysis tick, Ixodes holocyclus, which has apparently only recently become a parasite of flying-foxes, may transmit Hendra virus and perhaps related viruses from flying-foxes to horses and other mammals.
|
|
Passler, S., & Pfeffer, M. (2003). Detection of antibodies to alphaviruses and discrimination between antibodies to eastern and western equine encephalitis viruses in rabbit sera using a recombinant antigen and virus-specific monoclonal antibodies. J Vet Med B Infect Dis Vet Public Health, 50(6), 265–269.
Abstract: Three arthropod-borne alphaviruses, western equine encephalitis viruses (WEEV), eastern equine encephalitis viruses (EEEV) and Venezuelan equine encephalitis viruses are the aetiological agents of a sometimes severe encephalomyelitis in equines and humans in the New World. With regard to the different ecology and epidemiology of these viruses, a method applied in serological screening should be able to distinguish between them as well as other related members of the genus Alphavirus in the American continent. However, this has been hampered in the past by (a) the close antigenic relationship between alphaviruses in traditional serological assays, especially in the routinely used haemagglutination-inhibition, and (b) the need of biosafety level 3 facilities to grow the viral antigens. An epitope blocking assay using an EEEV glycoprotein E1-expressing recombinant Sindbis virus and virus-specific monoclonal antibodies (mAbs) binding to the E1 of EEEV (strain NJ/60) and the E1 of Sindbis virus was established using automated flow cytometry. The test was evaluated using sera of infected and vaccinated rabbits. A cut-off value of 30% inhibition for antigenic complex-specific seroconversion was found to be sufficient for the detection of the respective infection. By using three different mAbs in parallel, we were able to detect alphavirus genus-, EEEV- and WEEV-complex-specific serum antibodies. As this test is based on the inhibition of binding of virus-specific mAbs, sera of every origin other than mouse can be tested. Thus, this assay may prove useful in the serological screening of a variety of animal species during an outbreak investigation.
|
|
Traversa, D., Giangaspero, A., Galli, P., Paoletti, B., Otranto, D., & Gasser, R. B. (2004). Specific identification of Habronema microstoma and Habronema muscae (Spirurida, Habronematidae) by PCR using markers in ribosomal DNA. Mol Cell Probes, 18(4), 215–221.
Abstract: Gastric or cutaneous habronemosis caused by Habronema microstoma Creplin, 1849 and Habronema muscae Carter, 1865 is a parasitic disease of equids transmitted by muscid flies. There is a paucity of information on the epidemiology of this disease, which is mainly due to limitations with diagnosis in the live animal and with the identification of the parasites in the intermediate hosts. To overcome such limitations, a molecular approach, based on the use of genetic markers in the second internal transcribed spacer (ITS-2) of ribosomal DNA, was established for the two species of Habronema. Characterisation of the ITS-2 revealed sequence lengths and G+C contents of 296 bp and 29.5% for H. microstoma, and of 334 bp and 35.9% for H. muscae, respectively. Exploiting the sequence difference (approximately 40%) between the two species of nematode, primers were designed and tested by the polymerase chain reaction (PCR) for their specificity using a panel of control DNA samples from common equid endoparasites, and from host tissues, faeces or muscid flies. Effective amplification from each of the two species of Habronema was achieved from as little as 10 pg of genomic DNA. Hence, this molecular approach allows the specific identification and differentiation of the DNA from H. microstoma and H. muscae, and could thus provide a molecular tool for the specific detection of Habronema DNA (irrespective of developmental stage) from faeces, skin and muscid fly samples. The establishment of this tool has important implications for the specific diagnosis of clinical cases of gastric and cutaneous habronemosis in equids, and for studying the ecology and epidemiology of the two species of Habronema.
|
|
Traversa, D., Giangaspero, A., Iorio, R., Otranto, D., Paoletti, B., & Gasser, R. B. (2004). Semi-nested PCR for the specific detection of Habronema microstoma or Habronema muscae DNA in horse faeces. Parasitology, 129(Pt 6), 733–739.
Abstract: Habronema microstoma and Habronema muscae (Spirurida: Habronematidae) are parasitic nematodes which infect the stomach and/or skin of equids. The accurate diagnosis of gastric habronemosis is central to studying its epidemiology, but data on its distribution and prevalence are lacking, mainly due to the limitations of clinical and coprological diagnosis in live horses. To overcome this constraint, a two-step, semi-nested PCR-based assay was validated (utilizing genetic markers in the nuclear ribosomal DNA) for the specific amplification of H. microstoma or H. muscae DNA from the faeces from horses (n = 46) whose gastrointestinal parasite status had been determined at autopsy and whose faeces were examined previously using a conventional parasitological approach. Of these horses examined at autopsy, some harboured adults of either H. microstoma (n= 19) or H. muscae (n =4), and others (n = 7) harboured both species. Most of them were also infected with other parasites, including strongylid nematodes (subfamilies Cyathostominae and Strongylinae), bots and/or cestodes; there was no evidence of metazoan parasites in 2 horses. Larvated spirurid eggs were detected in the faeces of 1 of the 30 horses (3.3 %) shown to be infected with Habronema at autopsy. For this set of 46 samples, the PCR assay achieved a diagnostic specificity of 100 % and a sensitivity of approximately 97 % (being able to specifically detect as little as approximately 0.02 fg of Habronema DNA). The specificity of the assay was also tested using a panel of control DNA samples representing horse, the gastric spirurid Draschia megastoma and 26 other species of parasites from the alimentary tract of the horse. H. microstoma, H. muscae and D. megastoma could be readily differentiated from one another based on the sizes of their specific amplicons in the PCR. The results of this study showed that the performance of the PCR for the diagnosis of gastric habronemosis was similar to that of autopsy but substantially better than the traditional coprological examination procedure used. The ability to specifically diagnose gastric habronemosis in equids should have important implications for investigating the epidemiology and ecology of H. microstoma and H. muscae.
|
|