Versace, E., Morgante, M., Pulina, G., & Vallortigara, G. (2007). Behavioural lateralization in sheep (Ovis aries). Behav. Brain. Res., 184(1), 72–80.
Abstract: This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.
|
|
Krueger, K., Schwarz, S., Marr, I., & Farmer, K. (2022). Laterality in Horse Training: Psychological and Physical Balance and Coordination and Strength Rather Than Straightness. Animals, 12(8), 1042.
Abstract: For centuries, a goal of training in many equestrian disciplines has been to straighten the horse, which is considered a key element in achieving its responsiveness and suppleness. However, laterality is a naturally occurring phenomenon in horses and encompasses body asymmetry, motor laterality and sensory laterality. Furthermore, forcibly counterbalancing motor laterality has been considered a cause of psychological imbalance in humans. Perhaps asymmetry and laterality should rather be accepted, with a focus on training psychological and physical balance, coordination and equal strength on both sides instead of enforcing “straightness”. To explore this, we conducted a review of the literature on the function and causes of motor and sensory laterality in horses, especially in horses when trained on the ground or under a rider. The literature reveals that body asymmetry is innate but does not prevent the horse from performing at a high level under a rider. Motor laterality is equally distributed in feral horses, while in domestic horses, age, breed, training and carrying a rider may cause left leg preferences. Most horses initially observe novel persons and potentially threatening objects or situations with their left sensory organs. Pronounced preferences for the use of left sensory organs or limbs indicate that the horse is experiencing increased emotionality or stress, and long-term insufficiencies in welfare, housing or training may result in left shifts in motor and sensory laterality and pessimistic mentalities. Therefore, increasing laterality can be regarded as an indicator for insufficiencies in housing, handling and training. We propose that laterality be recognized as a welfare indicator and that straightening the horse should be achieved by conducting training focused on balance, coordination and equal strength on both sides.
|
|
Schwarz, S., Marr, I., Farmer, K., Graf, K., Stefanski, V., & Krueger, K. (2022). Does Carrying a Rider Change Motor and Sensory Laterality in Horses? Animals, 12(8), 992.
Abstract: Laterality in horses has been studied in recent decades. Although most horses are kept for riding purposes, there has been almost no research on how laterality may be affected by carrying a rider. In this study, 23 horses were tested for lateral preferences, both with and without a rider, in three different experiments. The rider gave minimal aids and rode on a long rein to allow the horse free choice. Firstly, motor laterality was assessed by observing forelimb preference when stepping over a pole. Secondly, sensory laterality was assessed by observing perceptual side preferences when the horse was confronted with (a) an unfamiliar person or (b) a novel object. After applying a generalised linear model, this preliminary study found that a rider increased the strength of motor laterality (p = 0.01) but did not affect sensory laterality (p = 0.8). This suggests that carrying a rider who is as passive as possible does not have an adverse effect on a horse�s stress levels and mental state.
|
|
Lucidi, P., Bacco, G., Sticco, M., Mazzoleni, G., Benvenuti, M., Bernabò, N., et al. (2013). Assessment of motor laterality in foals and young horses (Equus caballus) through an analysis of derailment at trot. Physiol. Behav., 109, 8–13.
Abstract: The conflicting results regarding the study of motor laterality in horses may indicate that there does not exist a proper method to assess the degree and the direction of motor bias in these animals. Unfortunately, even less is known about the development of laterality in horses, and to what extent early manipulations can still exert their effects in adulthood. We propose a new method that can be easily applied at a very early age thus avoiding testing adult horses eventually biased by human handling and/or training. Forty-six horses (29 nine-month-old foals and 17 two-year old horses) were handled since birth bilaterally and housed in groups in wide areas. At the time of the analysis, in order to minimize environmental and sensorial disturbances, each horse was tested in a round pen individually or as dyad mother-foal. The ability/inability to properly execute a circle at trot was then recorded, assuming the direction of derailment, i.e. the cutting of the circle, as an indicator of motor bias. From the results of the study it is arguable that motor laterality in horses is acquired over time: in fact foals tested while their mothers were being subjected to longeing showed a higher percentage of ambidextrous animals, while two-year-old horses appeared biased toward the right (p<0.05). Results are discussed in the light of the scientific knowledge about equine biomechanics, taking into account horses' locomotion that leads to the advancement of the body mass through the activation of a kinetic chain that originates from the hindquarters.
|
|
Stomp, M., d'Ingeo, S., Henry, S., Cousillas, H., & Hausberger, M. (2021). Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model. Applied Animal Behaviour Science, 236, 105271.
Abstract: Assessing the animal welfare state is a challenge given the subjective individual cognitive and emotional processing involved. Electroencephalography (EEG) spectrum analysis has proved an ecologically valid recording situation to assess the link between brain processes and affective or cognitive states in humans: a higher slow wave/fast wave ratio has been associated with a positive internal state. In particular, a high production of theta power (3-8 Hz) has been related to positive emotions. On the other hand, it has been hypothesized that a left hemisphere (LH) dominance may be associated with a better welfare state. Here, we test the hypothesis that individual differences in the resting-state quantitative EEG power spectrum of adult horses (N = 18) and its lateralization pattern may reflect individual subjective perception of their conditions of life and welfare state. The results show clear individual differences in the proportions of the different waves and their inter-hemispheric distribution. Three different EEG power spectrum profiles were highlighted, from a bilateral predominance of theta waves in horses in a more positive welfare state to a bilateral predominance of beta waves in horses with clear expressions of compromised welfare. Interestingly, particular correlations were found between wave power activity and welfare parameters. We found a negative correlation between the number of stereotypic behaviours per hour and the median proportion of theta waves in the left hemisphere. and between the overall state (total chronic stress score) of welfare and gamma production in the right hemisphere (RH). These findings go along the hypothesis of a particular involvement of the left hemisphere for positive processing and of the right hemisphere for negative processing. However, the pattern of laterality did not appear as the most important feature here as both extreme clusters in terms of welfare showed bilateral predominance of one wave type. It is possible that hemispheric specialization makes more sense during acute emotion-inducing conditions rather than in this resting-state context (i.e. in absence of any high emotion-inducing stimulation), although the opposition gamma versus theta waves between both hemispheres in the horses with an intermediate welfare state is noticeable and intriguing. It seems that bilateral but also LH theta activity is a promising neurophysiological marker of good welfare in horses, while a bilateral or RH high production of gamma waves should alert about potential welfare alterations. Quantitative resting-state EEG power spectrum appears as a highly promising tool for exploring the brain processes involved in the subjective perception of chronic welfare, as a useful complementary tool for welfare assessment.
|
|