Home | << 1 2 >> |
Aureli, F., Preston, S. D., & de Waal, F. B. (1999). Heart rate responses to social interactions in free-moving rhesus macaques (Macaca mulatta): a pilot study. J Comp Psychol, 113(1), 59–65.
Abstract: Heart rate telemetry was explored as a means to access animal emotion during social interactions under naturalistic conditions. Heart rates of 2 middle-ranking adult females living in a large group of rhesus macaques (Macaca mulatta) were recorded along with their behavior. Heart rate changes during 2 types of interactions were investigated, while controlling for the effects of posture and activity. The risk of aggression associated with the approach of a dominant individual was expected to provoke anxiety in the approachee. This prediction was supported by the heart rate increase after such an approach. No increase was found when the approacher was a kin or a subordinate individual. The tension-reduction function of allogrooming was also supported. Heart rate decelerated faster during the receipt of grooming than in matched control periods.
|
Christensen, J. W., Rundgren, M., & Olsson, K. (2006). Training methods for horses: habituation to a frightening stimulus. Equine Vet J, 38(5), 439–443.
Abstract: REASONS FOR PERFORMING STUDY: Responses of horses in frightening situations are important for both equine and human safety. Considerable scientific interest has been shown in development of reactivity tests, but little effort has been dedicated to the development of appropriate training methods for reducing fearfulness. OBJECTIVES: To investigate which of 3 different training methods (habituation, desensitisation and counter-conditioning) was most effective in teaching horses to react calmly in a potentially frightening situation. HYPOTHESES: 1) Horses are able to generalise about the test stimulus such that, once familiar with the test stimulus in one situation, it appears less frightening and elicits a reduced response even when the stimulus intensity is increased or the stimulus is presented differently; and 2) alternative methods such as desensitisation and counter-conditioning would be more efficient than a classic habituation approach. METHODS: Twenty-seven naive 2-year-old Danish Warmblood stallions were trained according to 3 different methods, based on classical learning theory: 1) horses (n = 9) were exposed to the full stimulus (a moving, white nylon bag, 1.2 x 0.75 m) in 5 daily training sessions until they met a predefined habituation criterion (habituation); 2) horses (n = 9) were introduced gradually to the stimulus and habituated to each step before the full stimulus was applied (desensitisation); 3) horses (n = 9) were trained to associate the stimulus with a positive reward before being exposed to the full stimulus (counter-conditioning). Each horse received 5 training sessions of 3 min per day. Heart rate and behavioural responses were recorded. RESULTS: Horses trained with the desensitisation method showed fewer flight responses in total and needed fewer training sessions to learn to react calmly to test stimuli. Variations in heart rate persisted even when behavioural responses had ceased. In addition, all horses on the desensitisation method eventually habituated to the test stimulus whereas some horses on the other methods did not. CONCLUSIONS AND POTENTIAL RELEVANCE: Desensitisation appeared to be the most effective training method for horses in frightening situations. Further research is needed in order to investigate the role of positive reinforcement, such as offering food, in the training of horses.
|
Cottin, F., Barrey, E., Lopes, P., & Billat, V. (2006). Effect of repeated exercise and recovery on heart rate variability in elite trotting horses during high intensity interval training. Equine Vet J Suppl, (36), 204–209.
Abstract: REASONS FOR PERFORMING STUDY: Interval training is a commonly used training method for trotting horses. In addition, trainers are provided with efficient and inexpensive heart rate monitor devices for the management of training. HYPOTHESIS: Since the high frequency (HF) frequency peak (fHF) of heart rate variability (HRV) corresponds to the breathing frequency in combination with stride frequency during trotting, it is hypothesised that modifications of breathing and stride frequencies induced by repeated exercise could be detected from fHF. METHODS: RR interval time series of 7 trotting horses were recorded during an interval training session. Interval training was made up of 5 successive 800 m high-velocity trotting runs (H1, H2...H5) separated by 1 min recovery bouts at low speed (R1, R2...R5). Fast Fourier transform (FFT) and Poincare plot analysis techniques were applied to RR series. RESULTS: Repeated exercise had significant effects on HRV components during interval training. Despite constant trotting velocities during high-speed and recovery, repetition induced a decrease in mean RR interval (H1: 295 +/- 19 vs. H5: 283 +/- 15 msec, P<0.05) and in the root mean square of successive differences in RR series (RMSSD; H1: 6.31 +/- 1.28 vs. H5: 5.31 +/- 1.31 msec, P<0.05). Furthermore, high-speed and recovery repetitions induced an increase in fHF (H1: 1.37 +/- 0.35 vs. H5: 1.62 +/- 0.40 Hz and R1: 0.22 +/- 0.02 vs. R4: 0.64 +/- 0.38 Hz, P<0.05). Hence, recovery induced a decrease in the s.d. of the successive RR series (SDRR; R3: 10.5 +/- 3.96 vs. R5: 6.17 +/- 2.65 msecs, P>0.05) and in the long term index of Poincare plot (SD2; R1: 43.29 +/- 28.90 vs. R5: 18.19 +/- 9.35 msecs, P<0.05). CONCLUSIONS: The observed increase in fHF during the interval training could be induced by alterations of the coupling between breathing and stride frequency linked to the emergence of fatigue. The decrease in SD2 and SDRR during successive recovery bouts could be linked with a deterioration of the recovery pattern. POTENTIAL RELEVANCE: HRV can provide breathing frequency data of Standardbreds during training without any respiratory device. Furthermore, HRV could provide useful makers of the emergence of fatigue states during training.
|
Gramkow, H. L., & Evans, D. L. (2006). Correlation of race earnings with velocity at maximal heart rate during a field exercise test in thoroughbred racehorses. Equine Vet J Suppl, (36), 118–122.
Abstract: REASONS FOR PERFORMING STUDY: Running ability of Thoroughbred racehorses is correlated with maximal oxygen uptake, and the velocity at maximal oxygen uptake is highly correlated with the velocity at maximal heart rate (VHRmax). OBJECTIVE: To investigate the relationship between VHRmax and racing performance, expressed as 'peak dollars earned per race start'. METHODS: Heart rate (HR) and velocity were recorded in 25 Thoroughbred racehorses during trotting and subsequent fast gallops in the field at velocities of 15-16 m/sec. Velocity was recorded by a global positioning system (GPS). Maximal HR (HRmax) and maximal velocity (Vmax) were identified, and a linear regression of HR on velocity for trotting and galloping data was constructed to derive VHRmax. Horses followed the training programme designed by one trainer, had at least 6 race starts and were clinically sound at the time of testing. Race earnings were expressed as the peak dollars per start in the horse's race career. Data were normalised using the results for the square root of 'peak dollars earned per race start' and the significance of associations between variables was determined by correlation coefficient and least square analyses. RESULTS: Horses with higher VHRmax earned significantly more dollars per race start (r = 0.41, P<0.05), and horses with VHRmax less than 14.5 m/sec had mean earnings of less than A$2500 per race. There were no correlations between race earnings and either HRmax or Vmax. CONCLUSION: Field studies of the relationship between HR and velocity with a GPS enable identification of horses with limited earnings. POTENTIAL RELEVANCE: This study demonstrates that a field test of fitness of Thoroughbred racehorses that correlates with retrospective racing ability is feasible. The technique has potential application in commercial training environments assisting with decisions concerning racing careers of individual racehorses.
|
Hada, T., Ohmura, H., Mukai, K., Eto, D., Takahashi, T., & Hiraga, A. (2006). Utilisation of the time constant calculated from heart rate recovery after exercise for evaluation of autonomic activity in horses. Equine Vet J Suppl, (36), 141–145.
Abstract: REASONS FOR PERFORMING STUDY: Heart rate (HR) recovery immediately after exercise is controlled by autonomic functions and the time constant (T) calculated from HR recovery is thought to be an index of parasympathetic activity in man. OBJECTIVES: To investigate whether it is possible to evaluate autonomic function using the time constant in horses. METHODS: Five Thoroughbred horses were subjected to a standard exercise test. Following pre-medication with saline, atropine and/or propranolol, the horses ran for 2.5 min at a speed of 8 m/sec at a 10% incline and T was calculated from HR after the exercise. Secondly, 7 Thoroughbred horses were then trained for 11 weeks and T and maximal oxygen uptake (VO2max) measured at intervals of 1 or 2 weeks. In 6 horses, T with atropine pre-medication was also measured before and after the whole training period. Furthermore, the HR variability at rest was evaluated by power spectral analysis at intervals of 3 or 4 weeks. RESULTS: Time constant was increased by atropine and/or propranolol pre-medication, decreased with the progress of training and inversely correlated with VO2max during training (r = 0.43, P<0.005). Parasympathetic blockade significantly decreased T only after and not before, the training; however, T was lower in post training than in pretraining, irrespective of parasympathetic blockade. On the other hand, parasympathetic activity at rest was attenuated and sympathetic activity became predominant following the training. CONCLUSION: Heart rate recovery is affected by sympathetic withdrawal and parasympathetic reactivation in horses and suggests that physical training hastened HR recovery by improving the parasympathetic function after exercise with aerobic capacity. However, the effects of other factors need to be considered because the training effect appeared on T even under parasympathetic blockade. The parasympathetic activity at rest is in contrast to that after exercise, suggesting that T does not reflect parasympathetic activity at rest. POTENTIAL RELEVANCE: If demonstrated how HR recovery is controlled after exercise, its analysis will be important in the evaluation of physical fitness in horses.
Keywords: Animals; Atropine/pharmacology; Autonomic Nervous System/drug effects/*physiology; Exercise Test/veterinary; Female; Heart Rate/*physiology; Horses/*physiology; Male; Oxygen Consumption/*physiology; Parasympatholytics/*pharmacology; Physical Conditioning, Animal/*physiology; Physical Fitness/physiology; Propranolol/pharmacology
|
Hedberg, Y., Dalin, A. - M., Ohagen, P., Holm, K. R., & Kindahl, H. (2005). Effect of oestrous-cycle stage on the response of mares in a novel object test and isolation test. Reprod Domest Anim, 40(5), 480–488.
Abstract: In various species, sex, hormonal treatments and oestrous-cycle stage have been shown to affect the animal's response in behavioural tests. Few such studies have been performed in the horse. The main aim of the present study was to investigate whether oestrous-cycle stage affects mares' response to a novel object test and isolation test and, in part, to study whether mares, assumed to suffer from oestrous-related behavioural problems, respond differently in these tests when compared with controls. Twelve mares were tested twice, in oestrus and dioestrus, in a crossover design. Seven behavioural and two heart rate variables were measured for the novel object test and two heart rate variables for the isolation test. Oestrous-cycle stage and whether a mare was classified as a 'problem' mare did not affect the mare's response. However, test order, i.e. the cycle stage a mare was tested in first, affected its reaction. This effect could partly be explained by significant differences between test occasions 1 and 2 in three behavioural variables and one heart rate variable (p < 0.05) in the novel object test. The mares explored the novel object more and had a higher mean heart rate in the first test. Exploring the novel object more could largely be attributed to those mares tested in dioestrus first, perhaps indicating that the mares in oestrus were less receptive to the novel object. The reason for the differences between test occasions could be an effect of learning or habituation.
|
Kingston, J. K., Soppet, G. M., Rogers, C. W., & Firth, E. C. (2006). Use of a global positioning and heart rate monitoring system to assess training load in a group of thoroughbred racehorses. Equine Vet J Suppl, (36), 106–109.
Abstract: REASONS FOR PERFORMING STUDY: Training is an important variable for determining athletic success. Nonetheless, there has been minimal scientific evaluation of racehorse training programmes. Training of racehorses focuses on running the horses at certain speeds using a combination of a stopwatch and rider's 'feel' for a horse's work intensity. Consequently, actual work intensity for individual horses is not clearly defined. OBJECTIVES: To 1) utilise a combined global positioning system (GPS) and heart rate monitor system to quantify training intensity and physiological responses of a group of racehorses undergoing training and racing; and 2) compare the workload measured by the GPS to that timed and recorded daily by a racehorse trainer. METHODS: Nineteen racehorses age 3 years were followed through a traditional training and racing programme over a 4 month period. Daily GPS and heart rate data together with the trainer's timing and distance data were collected while the horses were trained. Data were analysed using an ANOVA for repeated measures. RESULTS: The combined GPS/heart rate monitoring system detected different heart rate responses in individual horses subjected to the same training workouts. The average speeds detected with the GPS system were in agreement with average speeds timed by the trainer. However, peak speeds reached during training were significantly greater (P<0.05) than those estimated with stopwatch timing. The horses average training speeds increased significantly over the duration of the training period. CONCLUSIONS AND POTENTIAL RELEVANCE: The results from this study show that a GPS/heart rate monitor system provides a reliable measure of daily workload in horses during training. This technology provides a detailed picture of horses' training sessions and has the potential to provide a greater insight into the types of training that may predispose horses to injury.
|
Kinnunen, S., Laukkanen, R., Haldi, J., Hanninen, O., & Atalay, M. (2006). Heart rate variability in trotters during different training periods. Equine Vet J Suppl, (36), 214–217.
Abstract: REASONS FOR PERFORMING STUDY: Endurance training induces changes in autonomic nervous system functions. High intensity training includes the risk of overtraining, in man and horse. Heart rate variability (HRV) is a noninvasive measurement of the autonomic regulation of the heart rate, which is quick and easy to measure with modern telemetric technology. HYPOTHESIS: Since HRV is affected by changes in the autonomic nervous system, it might be an early stage indicator of poor recovery from a previous bout of exercise or overreaching or overtraining in horses in general. METHODS: The aim of the study was to monitor recovery and the possible overtraining status in horses by measuring HRV. The measurements reflected the responses of the previous day activities during different training periods including basic training, precompetition and competition during a one-year follow-up. RESULTS: HRV was at the highest during precompetition period (P<0.05) and it decreased significantly during competition period (P<0.05), indicating an increased stress load in the competition period. Walking increased HRV significantly compared to complete rest or jogging as previous day activities during basic training and precompetition periods (P<0.05). This finding suggests that horses are more relaxed during moderate exercise than standing still or anaerobic exercise. CONCLUSIONS: HRV can be used to monitor the cardiovascular responses to training in horses but confirmatory measures may also be required in addition to HRV to exclude other possible causes of underperformance.
|
Leleu, C., & Cotrel, C. (2006). Body composition in young standardbreds in training: relationships to body condition score, physiological and locomotor variables during exercise. Equine Vet J Suppl, (36), 98–101.
Abstract: REASONS FOR PERFORMING STUDY: Body composition is an essential factor in athletic performance of human sprinters and long distance runners. However, in horses, many questions remain concerning relationships between body composition and performance in the different equine activities. OBJECTIVES: To determine relationships between body composition, body score, physiological and locomotor variables in a population of young Standardbreds in training. METHODS: Twenty-four 2-year-old Standardbreds were studied, body condition on a scale 0-5 and bodyweight recorded, and height at withers measured. Percentage of fat (%F), fat mass (FM) and fat free mass (FFM) were estimated echographically. During a standardised exercise test on the track, velocity, heart rate, respiratory frequency and blood lactate concentrations were measured. V4 and V200 (velocity for a blood lactate concentration of 4 mmol/l and velocity of 200 beats/min) calculated. Basic gait variables were measured at 3 different speeds with an accelerometric device. RESULTS: Body composition variables: %F and FM were significantly related to body condition score and physiological variables. Body score was highly correlated to %F (r = 0.64) and FM (r = 0.71). V4 was negatively correlated to %F (r = -0.59) and FM (r = -0.60), P<0.05. V200 was also negatively related to %F and FM, (r = -0.39 and r = -0.37, respectively, P<0.1). No relationships were found between body composition and gait characteristics. CONCLUSIONS: Body composition was closely related to indirect measurements of aerobic capacity, which is a major factor of athletic performance in middle distance running horses. POTENTIAL RELEVANCE: As in human athletes, trainers should take special note to evaluate optimal bodyweight and body composition of race horses to optimise performance.
Keywords: Adipose Tissue/metabolism; Animals; Body Composition/*physiology; Body Constitution/*physiology; Body Weight/physiology; Exercise Test/veterinary; Female; Gait/physiology; Heart Rate/*physiology; Horses/*physiology; Lactates/blood; Male; Muscle, Skeletal/metabolism; Physical Conditioning, Animal/*physiology
|
Minero, M., Canali, E., Ferrante, V., Verga, M., & Odberg, F. O. (1999). Heart rate and behavioural responses of crib-biting horses to two acute stressors. Vet. Rec., 145(15), 430–433.
Abstract: The heart rate and behaviour of 14 adult saddle horses, eight crib-biters and six normal controls, were investigated. Initially, the relationship between crib-biting and heart rate was investigated while the horses were undisturbed. The horses were tested when restrained with a lip twitch, and assessed when they were exposed suddenly to the rapid inflation of a balloon. The heart rate of the crib-biters during crib-biting was lower than during other behaviours. The crib-biters had a higher overall mean heart rate (P<0.05) suggesting that they may have had a higher basal sympathetic activity. After the application of the twitch, all the horses had a transient increase in heart rate which returned to basal values more rapidly in the crib-biters. The crib-biters were less reactive to the lip twitch, five of the six investigated remaining calm, and after the release of the twitch, they spent more time nibbling (P<0.05) than the control horses. The crib-biters reacted more strongly to the inflation of the balloon (three of the six reacted), and after it had been inflated they spent more time walking in the box.
|