Baltic, M., Jenni-Eiermann, S., Arlettaz, R., & Palme, R. (2005). A noninvasive technique to evaluate human-generated stress in the black grouse. Ann N Y Acad Sci, 1046, 81–95.
Abstract: The continuous development of tourism and related leisure activities is exerting an increasingly intense pressure on wildlife. In this study, a novel noninvasive method for measuring stress in the black grouse, an endangered, emblematic species of European ecosystems that is currently declining in several parts of its European range, is tested and physiologically validated. A radiometabolism study and an ACTH challenge test were performed on four captive black grouse (two of each sex) in order to get basic information about the metabolism and excretion of corticosterone and to find an appropriate enzyme-immunoassay (EIA) to measure its metabolites in the feces. Peak radioactivity in the droppings was detected within 1 to 2 hours. Injected (3)H-corticosterone was excreted as polar metabolites and by itself was almost absent. A cortisone-EIA was chosen from among seven tested EIAs for different groups of glucocorticoid metabolites, because it cross-reacted with some of the formed metabolites and best reflected the increase of excreted corticosterone metabolites, after the ACTH challenge test. Concentrations of the metabolites from fecal samples collected from snow burrows of free-ranging black grouse were within the same range as in captive birds. The noninvasive method described may be appropriate for evaluating the stress faced by free-living black grouse populations in the wild, particularly in mountain ecosystems where human disturbance, especially by winter sports, is of increasing conservation concern.
|
|
Endy, T. P., & Nisalak, A. (2002). Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol, 267, 11–48.
|
|
Hall, R. A., Broom, A. K., Smith, D. W., & Mackenzie, J. S. (2002). The ecology and epidemiology of Kunjin virus. Curr Top Microbiol Immunol, 267, 253–269.
|
|
Komar, N. (2003). West Nile virus: epidemiology and ecology in North America. Adv Virus Res, 61, 185–234.
|
|
Giangaspero, A., Traversa, D., & Otranto, D. (2004). [Ecology of Thelazia spp. in cattle and their vectors in Italy]. Parassitologia, 46(1-2), 257–259.
Abstract: The genus Thelazia (Spirurida, Thelaziidae) includes a cosmopolitan group of eyeworm spirurids responsible for ocular infections in domestic and wild animals and transmitted by different species of muscids. Bovine thelaziosis is caused by Thelazia rhodesi Desmarest 1828, Thelazia gulosa Railliet & Henry 1910, and Thelazia skrjabini Erschow 1928, which occur in many countries; T. gulosa and T. skrjabini have been reported mainly in the New World, while T. rhodesi is particularly common in the Old World. In Italy, T. rhodesi was reported in southern regions a long time ago and, recently, T. gulosa and T. skrjabini have been identified in autochthonous cattle first in Apulia and then in Sardinia. Thirteen species of Musca are listed as intermediate hosts of eyeworms, but only Musca autumnalis and Musca larvipara have been demonstrated to act as vectors of Thelazia in the ex-URSS, North America, ex-Czechoslovakia and more recently in Sweden. In Italy, after the reports of T. gulosa and T. skrjabini in southern regions, the intermediate hosts of bovine eyeworms were initially only suspected as the predominant secretophagous Muscidae collected from the periocular region of cattle with thelaziosis were the face flies, M. autumnalis and M. larvipara, followed by Musca osiris, Musca tempestiva and Musca domestica. The well-known constraints in the identification of immature eyeworms to species by fly dissection and also the time-consuming techniques used constitute important obstacles to epidemiological field studies (i.e. vector identification and/or role, prevalence and pattern of infection in flies, etc.). Molecular studies have recently permitted to further investigations into this area. A PCR-RFLP analysis of the ribosomal ITS-1 sequence was developed to differentiate the 3 species of Thelazia (i.e. T. gulosa, T. rhodesi and T. skrjabini) found in Italy, then a molecular epidemiological survey has recently been carried out in field conditions throughout five seasons of fly activity and has identified the role of M. autumnalis, M. larvipara, M. osiris and M. domestica as vectors of T. gulosa and of M. autumnalis and M. larvipara of T. rhodesi. Moreover, M. osiris was described, for the first time, to act as a vector of T. gulosa and M. larvipara of T. gulosa and T. rhodesi. The mean prevalence in the fly population examined was found to be 2.86%. The molecular techniques have opened new perspectives for further research on the ecology and epidemiology not only of Thelazia in cattle but also of other autochthonous species of Thelazia which have been also recorded in Italy, such as Thelazia callipaeda, which is responsible for human and canid ocular infection and Thelazia lacrymalis, the horse eyeworm whose epidemiological molecular studies are in progress.
|
|