Home | << 1 2 3 4 >> |
![]() |
Acuna, B. D., Sanes, J. N., & Donoghue, J. P. (2002). Cognitive mechanisms of transitive inference. Exp Brain Res, 146(1), 1–10.
Abstract: We examined how the brain organizes interrelated facts during learning and how the facts are subsequently manipulated in a transitive inference (TI) paradigm (e.g., if A<B and B<C, then A<C). This task determined features such as learned facts and behavioral goals, but the learned facts could be organized in any of several ways. For example, if one learns a list by operating on paired items, the pairs may be stored individually as separate facts and reaction time (RT) should decrease with learning. Alternatively, the pairs may be stored as a single, unified list, which may yield a different RT pattern. We characterized RT patterns that occurred as participants learned, by trial and error, the predetermined order of 11 shapes. The task goal was to choose the shape occurring closer to the end of the list, and feedback about correctness was provided during this phase. RT increased even as its variance decreased during learning, suggesting that the learnt knowledge became progressively unified into a single representation, requiring more time to manipulate as participants acquired relational knowledge. After learning, non-adjacent (NA) list items were presented to examine how participants reasoned in a TI task. The task goal also required choosing from each presented pair the item occurring closer to the list end, but without feedback. Participants could solve the TI problems by applying formal logic to the previously learnt pairs of adjacent items; alternatively, they could manipulate a single, unified representation of the list. Shorter RT occurred for NA pairs having more intervening items, supporting the hypothesis that humans employ unified mental representations during TI. The response pattern does not support mental logic solutions of applying inference rules sequentially, which would predict longer RT with more intervening items. We conclude that the brain organizes information in such a way that reflects the relations among the items, even if the facts were learned in an arbitrary order, and that this representation is subsequently used to make inferences.
|
Allen, C. (1998). Assessing animal cognition: ethological and philosophical perspectives. J. Anim Sci., 76(1), 42–47.
Abstract: Developments in the scientific and philosophical study of animal cognition and mentality are of great importance to animal scientists who face continued public scrutiny of the treatment of animals in research and agriculture. Because beliefs about animal minds, animal cognition, and animal consciousness underlie many people's views about the ethical treatment of nonhuman animals, it has become increasingly difficult for animal scientists to avoid these issues. Animal scientists may learn from ethologists who study animal cognition and mentality from an evolutionary and comparative perspective and who are at the forefront of the development of naturalistic and laboratory techniques of observation and experimentation that are capable of revealing the cognitive and mental properties of nonhuman animals. Despite growing acceptance of the ethological study of animal cognition, there are critics who dispute the scientific validity of the field, especially when the topic is animal consciousness. Here, a proper understanding of developments in the philosophy of mind and the philosophy of science can help to place cognitive studies on a firm methodological and philosophical foundation. Ultimately, this is an interdisciplinary task, involving scientists and philosophers. Animal scientists are well-positioned to contribute to the study of animal cognition because they typically have access to a large pool of potential research subjects whose habitats are more controlled than in most field studies while being more natural than most laboratory psychology experiments. Despite some formidable questions remaining for analysis, the prospects for progress in assessing animal cognition are bright.
|
Barrett, L., & Henzi, P. (2005). The social nature of primate cognition. Proc Biol Sci, 272(1575), 1865–1875.
Abstract: The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.
|
Benard, J., Stach, S., & Giurfa, M. (2006). Categorization of visual stimuli in the honeybee Apis mellifera. Anim. Cogn., 9(4), 257–270.
Abstract: Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
|
Bennett, A. T. (1996). Do animals have cognitive maps? J Exp Biol, 199(Pt 1), 219–224.
Abstract: Drawing on studies of humans, rodents, birds and arthropods, I show that 'cognitive maps' have been used to describe a wide variety of spatial concepts. There are, however, two main definitions. One, sensu Tolman, O'Keefe and Nadel, is that a cognitive map is a powerful memory of landmarks which allows novel short-cutting to occur. The other, sensu Gallistel, is that a cognitive map is any representation of space held by an animal. Other definitions with quite different meanings are also summarised. I argue that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible. Owing to the repeated inability of experimenters to eliminate these simpler explanations over at least 15 years, and the confusion caused by the numerous contradictory definitions of a cognitive map, I argue that the cognitive map is no longer a useful hypothesis for elucidating the spatial behaviour of animals and that use of the term should be avoided.
|
Boysen, S. T., & Berntson, G. G. (1995). Responses to quantity: perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). J Exp Psychol Anim Behav Process, 21(1), 82–86.
Abstract: Two chimpanzees were trained to select among 2 different amounts of candy (1-6 items). The task was designed so that selection of either array by the active (selector) chimpanzee resulted in that array being given to the passive (observer) animal, with the remaining (nonselected) array going to the selector. Neither animal was able to select consistently the smaller array, which would reap the larger reward. Rather, both animals preferentially selected the larger array, thereby receiving the smaller number of reinforcers. When Arabic numerals were substituted for the food arrays, however, the selector animal evidenced more optimal performance, immediately selecting the smaller numeral and thus receiving the larger reward. These findings suggest that a basic predisposition to respond to the perceptual-motivational features of incentive stimuli can interfere with task performance and that this interference can be overridden when abstract symbols serve as choice stimuli.
|
Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev, 27(1-2), 141–153.
Abstract: About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
Keywords: Animals; Animals, Genetically Modified/growth & development; Behavior/physiology; Behavior, Animal; Brain/*growth & development; Cognition/*physiology; *Disease Models, Animal; Environment; Genes; Genetic Diseases, Inborn/physiopathology; Humans; Mental Retardation/classification/*genetics/*physiopathology
|
Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: a primate's eye view. Anim. Cogn., 5(1), 1–13.
Abstract: We provide selected examples from the fish literature of phenomena found in fish that are currently being examined in discussions of cognitive abilities and evolution of neocortex size in primates. In the context of social intelligence, we looked at living in individualized groups and corresponding social strategies, social learning and tradition, and co-operative hunting. Regarding environmental intelligence, we searched for examples concerning special foraging skills, tool use, cognitive maps, memory, anti-predator behaviour, and the manipulation of the environment. Most phenomena of interest for primatologists are found in fish as well. We therefore conclude that more detailed studies on decision rules and mechanisms are necessary to test for differences between the cognitive abilities of primates and other taxa. Cognitive research can benefit from future fish studies in three ways: first, as fish are highly variable in their ecology, they can be used to determine the specific ecological factors that select for the evolution of specific cognitive abilities. Second, for the same reason they can be used to investigate the link between cognitive abilities and the enlargement of specific brain areas. Third, decision rules used by fish could be used as 'null-hypotheses' for primatologists looking at how monkeys might make their decisions. Finally, we propose a variety of fish species that we think are most promising as study objects.
|
Call, J. (2002). A fish-eye lens for comparative studies: broadening the scope of animal cognition. Anim. Cogn., 5(1), 15–16.
Abstract: ? is the article no longer available?
|
Cerutti, D. T., & Staddon, J. E. R. (2004). Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis. J Exp Psychol Anim Behav Process, 30(1), 45–57.
Abstract: In the time-left experiment (J. Gibbon & R. M. Church, 1981), animals are said to compare an expectation of a fixed delay to food, for one choice, with a decreasing delay expectation for the other, mentally representing both upcoming time to food and the difference between current time and upcoming time (the cognitive hypothesis). The results of 2 experiments support a simpler view: that animals choose according to the immediacies of reinforcement for each response at a time signaled by available time markers (the temporal control hypothesis). It is not necessary to assume that animals can either represent or subtract representations of times to food to explain the results of the time-left experiment.
|