Home | << 1 >> |
Hewitt, S. E., Macdonald, D. W., & Dugdale, H. L. (2009). Context-dependent linear dominance hierarchies in social groups of European badgers, Meles meles. Anim. Behav., 77(1), 161–169.
Abstract: A social hierarchy is generally assumed to exist in those mammalian societies in which the costs and benefits of group living are distributed unevenly among group members. We analysed infrared closed-circuit television footage, collected over 3 years in Wytham Woods, Oxfordshire, to test whether social groups of European badgers have dominance hierarchies. Analysis of directed aggression between dyads revealed linear dominance hierarchies in three social-group-years, but patterns within social groups were not consistent across years. Dominance hierarchies were significantly steeper than random in five out of six social-group-years. In those social-group-years where a linear hierarchy was determined, there was an effect of sex on dominance rank, with females gaining significantly higher rank than males in two social-group-years. Overall, rank was not related to age, nor did it appear to affect the likelihood of an individual being wounded, or an individual's breeding status. The latter resulted from nonorthogonality between sex and breeding status, as there were only two breeding males. Overall, hierarchies were primarily dominated by breeding females, and may occur when breeding competition arises. Relatedness, unreciprocated allogrooming and sequential allomarking were not consistently related to levels of directed aggression across social-group-years. We suggest that dominance structures within European badger groups may be context dependent, with future study required to complete our understanding of where, and when, they arise.
|
Broekhuis, F., Madsen, E. K., Keiwua, K., & Macdonald, D. W. (2019). Using GPS collars to investigate the frequency and behavioural outcomes of intraspecific interactions among carnivores: A case study of male cheetahs in the Maasai Mara, Kenya. Plos One, 14(4), e0213910.
Abstract: Intraspecific interactions between individuals or groups of individuals of the same species are an important component of population dynamics. Interactions can be static, such as spatial overlap, or dynamic based on the interactions of movements, and can be mediated through communication, such as the deployment of scent marks. Interactions and their behavioural outcomes can be difficult to determine, especially for species that live at low densities. With the use of GPS collars we quantify both static and dynamic interactions between male cheetahs (Acinonyx jubatus) and the behavioural outcomes. The 99% home-ranges of males overlapped significantly while there was little overlap of the 50% home-ranges. Despite this overlap, male cheetahs rarely came into close proximity of one another, possibly because presence was communicated through frequent visits to marking posts. The minimum distance between individuals in a dyad ranged from 89m to 196m but the average proximity between individuals ranged from 17,145 ± 6,865m to 26,367 ± 11,288m. Possible interactions took place more frequently at night than by day and occurred mostly in the 50% home-range of one individual of a dyad or where cores of both individuals overlapped. After a possible encounter male cheetahs stayed in close proximity to each other for up to 6 hours, which could be the result of a territory defence strategy or the presence of a receptive female. We believe that one of the encounters between a singleton and a 5-male coalition resulted in the death of the singleton. Our results give new insights into cheetah interactions, which could help our understanding of ecological processes such as disease transmission.
|