|
da Cruz, A. B., Hirata, S., dos Santos, M. E., & Mendonça, R. S. (2023). Show me your best side: Lateralization of social and resting behaviors in feral horses. Behav. Process., 206, 104839.
Abstract: Growing evidence shows a variety of sensorial and motor asymmetries in social and non-social interactions in various species, indicating a lateralized processing of information by the brain. Using digital video cameras on tripods and drones, this study investigated lateralization in frequency and duration of social behavior patterns, in affiliative, agonistic, and resting contexts, in a feral population of horses (Equus ferus caballus) in Northern Portugal, consisting of 37 individuals organized in eight harem groups. Affiliative interactions (including grooming) were more often performed, and lasted longer, when recipients were positioned to the right side. In recumbent resting (animals lying down) episodes on the left side lasted longer. Our results of an affiliative behavior having a right side tendency, provide partial support to the valence-specific hypothesis of Ahern and Schwartz (1979) – left hemisphere dominance for positive affect, affiliative behaviors. Longer recumbent resting episodes on the left side may be due to synchronization. However, in both instances it is discussed how lateralization may be context dependent. Investigating the position asymmetries of social behaviors in feral equids will contribute to a better understanding of differential lateralization and hemispheric specialization from the ecological and evolutionary perspectives.
|
|
|
da Cruz, A. B., Hirata, S., dos Santos, M. E., & Mendonça, R. S. (2023). Show me your best side: Lateralization of social and resting behaviors in feral horses. Behav. Process., 206, 104839.
Abstract: Growing evidence shows a variety of sensorial and motor asymmetries in social and non-social interactions in various species, indicating a lateralized processing of information by the brain. Using digital video cameras on tripods and drones, this study investigated lateralization in frequency and duration of social behavior patterns, in affiliative, agonistic, and resting contexts, in a feral population of horses (Equus ferus caballus) in Northern Portugal, consisting of 37 individuals organized in eight harem groups. Affiliative interactions (including grooming) were more often performed, and lasted longer, when recipients were positioned to the right side. In recumbent resting (animals lying down) episodes on the left side lasted longer. Our results of an affiliative behavior having a right side tendency, provide partial support to the valence-specific hypothesis of Ahern and Schwartz (1979) – left hemisphere dominance for positive affect, affiliative behaviors. Longer recumbent resting episodes on the left side may be due to synchronization. However, in both instances it is discussed how lateralization may be context dependent. Investigating the position asymmetries of social behaviors in feral equids will contribute to a better understanding of differential lateralization and hemispheric specialization from the ecological and evolutionary perspectives.
|
|
|
Hirata, S. (2007). A note on the responses of chimpanzees (Pan troglodytes) to live self-images on television monitors. Behav. Process., 75(1), 85–90.
Abstract: The majority of studies on self-recognition in animals have been conducted using a mirror as the test device; little is known, however, about the responses of non-human primates toward their own images in media other than mirrors. This study provides preliminary data on the reactions of 10 chimpanzees to live self-images projected on two television monitors, each connected to a different video camera. Chimpanzees could see live images of their own faces, which were approximately life-sized, on one monitor. On the other monitor, they could see live images of their whole body, which were approximately one-fifth life-size, viewed diagonally from behind. In addition, several objects were introduced into the test situation. Out of 10 chimpanzees tested, 2 individuals performed self-exploratory behaviors while watching their own images on the monitors. One of these two chimpanzees successively picked up two of the provided objects in front of a monitor, and watched the images of these objects on the monitor. The results indicate that these chimpanzees were able to immediately recognize live images of themselves or objects on the monitors, even though several features of these images differed from those of their previous experience with mirrors.
|
|
|
Hirata, S., & Celli, M. L. (2003). Role of mothers in the acquisition of tool-use behaviours by captive infant chimpanzees. Anim. Cogn., 6(4), 235–244.
Abstract: This article explores the maternal role in the acquisition of tool-use behaviours by infant chimpanzees ( Pan troglodytes). A honey-fishing task, simulating ant/termite fishing found in the wild, was introduced to three dyads of experienced mother and naive infant chimpanzees. Four fishing sites and eight sets of 20 objects to be used as tools, not all appropriate, were available. Two of the mothers constantly performed the task, using primarily two kinds of tools; the three infants observed them. The infants, regardless of the amount of time spent observing, successfully performed the task around the age of 20-22 months, which is earlier than has been recorded in the wild. Two of the infants used the same types of tools that the adults predominantly used, suggesting that tool selectivity is transmitted. The results also show that adults are tolerant of infants, even if unrelated; infants were sometimes permitted to lick the tools, or were given the tools, usually without honey, as well as permitted to observe the adult performances closely.
|
|
|
Hirata, S., & Matsuzawa, T. (2001). Tactics to obtain a hidden food item in chimpanzee pairs (Pan troglodytes). Anim. Cogn., 4(3), 285–295.
Abstract: Five dyads of chimpanzees were tested in a competitive situation, as a pilot study to examine chimpanzees' understanding of conspecifics' knowledge. A human experimenter baited one of five containers in an outdoor enclosure. Chimpanzee A (witness) could see where the food was hidden, while chimpanzee B (witness-of-witness) could not see the baited place but could observe the chimpanzee A watching the food being hidden. Then the two were released into the enclosure. This procedure was repeated for a certain number of days along with a control condition in which neither could see the baited location. The witness-of-witness developed tactics to forestall the witness in two pairs. The witness misled the witness-of-witness by taking a route to an empty container in several cases. These episodes might represent examples of deception. Tactics and counter-tactics thus developed through the interaction between the witness and the witness-of-witness, illustrating the high social intelligence of chimpanzees. An examination of the changes in tactics suggests a possibility that the witness-of-witness understands the witness's knowledge of the location of hidden food.
|
|