Home | << 1 >> |
d'Ingeo, S., Quaranta, A., Siniscalchi, M., Stomp, M., Coste, C., Bagnard, C., et al. (2019). Horses associate individual human voices with the valence of past interactions: a behavioural and electrophysiological study. Scientific Reports, 9(1), 11568.
Abstract: Brain lateralization is a phenomenon widely reported in the animal kingdom and sensory laterality has been shown to be an indicator of the appraisal of the stimulus valence by an individual. This can prove a useful tool to investigate how animals perceive intra- or hetero-specific signals. The human-animal relationship provides an interesting framework for testing the impact of the valence of interactions on emotional memories. In the present study, we tested whether horses could associate individual human voices with past positive or negative experiences. Both behavioural and electroencephalographic measures allowed examining laterality patterns in addition to the behavioural reactions. The results show that horses reacted to voices associated with past positive experiences with increased attention/arousal (gamma oscillations in the right hemisphere) and indicators of a positive emotional state (left hemisphere activation and ears held forward), and to those associated with past negative experiences with negative affective states (right hemisphere activation and ears held backwards). The responses were further influenced by the animals' management conditions (e.g. box or pasture). Overall, these results, associating brain and behaviour analysis, clearly demonstrate that horses' representation of human voices is modulated by the valence of prior horse-human interactions.
|
George, I., Cousillas, H., Richard, J. - P., & Hausberger, M. (2002). Song perception in the European starling: hemispheric specialisation and individual variations. Compt. Rend. Biol., 325(3), 197–204.
Abstract: Hemispheric specialisation for speech in humans has been well documented. The lateralisation for song production observed in songbirds is reminiscent of this hemispheric dominance. In order to investigate whether song perception is also lateralised, we made multiunit recordings of the neuronal activity in the field L of starlings during the presentation of species-specific and artificial non-specific sounds. We observed a systematic stronger activation in one hemisphere than in the other one during the playback of species-specific sounds, with inter-subject variability in the predominant hemisphere for song perception. Such an asymmetry was not observed for artificial non-specific sounds. Thus, our results suggest that, at least at the individual level, the two hemispheres of the starlings' brain perceive and process conspecific signals differently.
|
Stomp, M., d'Ingeo, S., Henry, S., Cousillas, H., & Hausberger, M. (2021). Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model. Appl. Anim. Behav. Sci., 236, 105271.
Abstract: Assessing the animal welfare state is a challenge given the subjective individual cognitive and emotional processing involved. Electroencephalography (EEG) spectrum analysis has proved an ecologically valid recording situation to assess the link between brain processes and affective or cognitive states in humans: a higher slow wave/fast wave ratio has been associated with a positive internal state. In particular, a high production of theta power (3-8 Hz) has been related to positive emotions. On the other hand, it has been hypothesized that a left hemisphere (LH) dominance may be associated with a better welfare state. Here, we test the hypothesis that individual differences in the resting-state quantitative EEG power spectrum of adult horses (N = 18) and its lateralization pattern may reflect individual subjective perception of their conditions of life and welfare state. The results show clear individual differences in the proportions of the different waves and their inter-hemispheric distribution. Three different EEG power spectrum profiles were highlighted, from a bilateral predominance of theta waves in horses in a more positive welfare state to a bilateral predominance of beta waves in horses with clear expressions of compromised welfare. Interestingly, particular correlations were found between wave power activity and welfare parameters. We found a negative correlation between the number of stereotypic behaviours per hour and the median proportion of theta waves in the left hemisphere. and between the overall state (total chronic stress score) of welfare and gamma production in the right hemisphere (RH). These findings go along the hypothesis of a particular involvement of the left hemisphere for positive processing and of the right hemisphere for negative processing. However, the pattern of laterality did not appear as the most important feature here as both extreme clusters in terms of welfare showed bilateral predominance of one wave type. It is possible that hemispheric specialization makes more sense during acute emotion-inducing conditions rather than in this resting-state context (i.e. in absence of any high emotion-inducing stimulation), although the opposition gamma versus theta waves between both hemispheres in the horses with an intermediate welfare state is noticeable and intriguing. It seems that bilateral but also LH theta activity is a promising neurophysiological marker of good welfare in horses, while a bilateral or RH high production of gamma waves should alert about potential welfare alterations. Quantitative resting-state EEG power spectrum appears as a highly promising tool for exploring the brain processes involved in the subjective perception of chronic welfare, as a useful complementary tool for welfare assessment.
Keywords: Laterality; Electroencephalography; Theta wave; Welfare; Horses
|
Stomp, M., d'Ingeo, S., Henry, S., Cousillas, H., & Hausberger, M. (2021). Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model. Applied Animal Behaviour Science, 236, 105271.
Abstract: Assessing the animal welfare state is a challenge given the subjective individual cognitive and emotional processing involved. Electroencephalography (EEG) spectrum analysis has proved an ecologically valid recording situation to assess the link between brain processes and affective or cognitive states in humans: a higher slow wave/fast wave ratio has been associated with a positive internal state. In particular, a high production of theta power (3-8 Hz) has been related to positive emotions. On the other hand, it has been hypothesized that a left hemisphere (LH) dominance may be associated with a better welfare state. Here, we test the hypothesis that individual differences in the resting-state quantitative EEG power spectrum of adult horses (N = 18) and its lateralization pattern may reflect individual subjective perception of their conditions of life and welfare state. The results show clear individual differences in the proportions of the different waves and their inter-hemispheric distribution. Three different EEG power spectrum profiles were highlighted, from a bilateral predominance of theta waves in horses in a more positive welfare state to a bilateral predominance of beta waves in horses with clear expressions of compromised welfare. Interestingly, particular correlations were found between wave power activity and welfare parameters. We found a negative correlation between the number of stereotypic behaviours per hour and the median proportion of theta waves in the left hemisphere. and between the overall state (total chronic stress score) of welfare and gamma production in the right hemisphere (RH). These findings go along the hypothesis of a particular involvement of the left hemisphere for positive processing and of the right hemisphere for negative processing. However, the pattern of laterality did not appear as the most important feature here as both extreme clusters in terms of welfare showed bilateral predominance of one wave type. It is possible that hemispheric specialization makes more sense during acute emotion-inducing conditions rather than in this resting-state context (i.e. in absence of any high emotion-inducing stimulation), although the opposition gamma versus theta waves between both hemispheres in the horses with an intermediate welfare state is noticeable and intriguing. It seems that bilateral but also LH theta activity is a promising neurophysiological marker of good welfare in horses, while a bilateral or RH high production of gamma waves should alert about potential welfare alterations. Quantitative resting-state EEG power spectrum appears as a highly promising tool for exploring the brain processes involved in the subjective perception of chronic welfare, as a useful complementary tool for welfare assessment.
Keywords: Laterality; Electroencephalography; Theta wave; Welfare; Horses
|