toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C. doi  openurl
  Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
  Year 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue 12 Pages 2811-2821  
  Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates  
  Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis” argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no  
  Call Number Equine Behaviour @ team @ Serial 4781  
Permanent link to this record
 

 
Author Jellinger, K.A. doi  openurl
  Title Comparative Cognition: Experimental Exploration of Animal Intelligence Type Journal Article
  Year 2007 Publication European Journal of Neurology Abbreviated Journal  
  Volume 14 Issue Pages e53-e53  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3418  
Permanent link to this record
 

 
Author Mithen, S. doi  openurl
  Title Did farming arise from a misapplication of social intelligence? Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 362 Issue 1480 Pages 705-718  
  Keywords  
  Abstract The origins of farming is the defining event of human history – the one turning point that has resulted in modern humans having a quite different type of lifestyle and cognition to all other animals and past types of humans. With the economic basis provided by farming, human individuals and societies have developed types of material culture that greatly augment powers of memory and computation, extending the human mental capacity far beyond that which the brain alone can provide. Archaeologists have long debated and discussed why people began living in settled communities and became dependent on cultivated plants and animals, which soon evolved into domesticated forms. One of the most intriguing explanations was proposed more than 20 years ago not by an archaeologist but by a psychologist: Nicholas Humphrey suggested that farming arose from the “misapplication of social intelligence”. I explore this idea in relation to recent discoveries and archaeological interpretations in the Near East, arguing that social intelligence has indeed played a key role in the origin of farming and hence the emergence of the modern world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3529  
Permanent link to this record
 

 
Author Byrne, R.W. doi  openurl
  Title Culture in great apes: using intricate complexity in feeding skills to trace the evolutionary origin of human technical prowess Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 362 Issue 1480 Pages 577-585  
  Keywords  
  Abstract Geographical cataloguing of traits, as used in human ethnography, has led to the description of “culture” in some non-human great apes. Culture, in these terms, is detected as a pattern of local ignorance resulting from environmental constraints on knowledge transmission. However, in many cases, the geographical variations may alternatively be explained by ecology. Social transmission of information can reliably be identified in many other animal species, by experiment or distinctive patterns in distribution; but the excitement of detecting culture in great apes derives from the possibility of understanding the evolution of cumulative technological culture in humans. Given this interest, I argue that great ape research should concentrate on technically complex behaviour patterns that are ubiquitous within a local population; in these cases, a wholly non-social ontogeny is highly unlikely. From this perspective, cultural transmission has an important role in the elaborate feeding skills of all species of great ape, in conveying the “gist” or organization of skills. In contrast, social learning is unlikely to be responsible for local stylistic differences, which are apt to reflect sensitive adaptations to ecology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3527  
Permanent link to this record
 

 
Author Emery, N.J.; Seed, A.M.; von Bayern, A.M.P.; Clayton, N.S. doi  openurl
  Title Cognitive adaptations of social bonding in birds Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 362 Issue 1480 Pages 489-505  
  Keywords  
  Abstract The “social intelligence hypothesis” was originally conceived to explain how primates may have evolved their superior intellect and large brains when compared with other animals. Although some birds such as corvids may be intellectually comparable to apes, the same relationship between sociality and brain size seen in primates has not been found for birds, possibly suggesting a role for other non-social factors. But bird sociality is different from primate sociality. Most monkeys and apes form stable groups, whereas most birds are monogamous, and only form large flocks outside of the breeding season. Some birds form lifelong pair bonds and these species tend to have the largest brains relative to body size. Some of these species are known for their intellectual abilities (e.g. corvids and parrots), while others are not (e.g. geese and albatrosses). Although socio-ecological factors may explain some of the differences in brain size and intelligence between corvids/parrots and geese/albatrosses, we predict that the type and quality of the bonded relationship is also critical. Indeed, we present empirical evidence that rook and jackdaw partnerships resemble primate and dolphin alliances. Although social interactions within a pair may seem simple on the surface, we argue that cognition may play an important role in the maintenance of long-term relationships, something we name as “relationship intelligence”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3528  
Permanent link to this record
 

 
Author Bonnie, K.E.; Horner, V.; Whiten, A.; de Waal, F.B.M. doi  openurl
  Title Spread of arbitrary conventions among chimpanzees: a controlled experiment Type Journal Article
  Year 2007 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 274 Issue 1608 Pages 367-372  
  Keywords  
  Abstract Wild chimpanzees (Pan troglodytes) have a rich cultural repertoire--traditions common in some communities are not present in others. The majority of reports describe functional, material traditions, such as tool use. Arbitrary conventions have received far less attention. In the same way that observations of material culture in wild apes led to experiments to confirm social transmission and identify underlying learning mechanisms, experiments investigating how arbitrary habits or conventions arise and spread within a group are also required. The few relevant experimental studies reported thus far have relied on cross-species (i.e. human-ape) interaction offering limited ecological validity, and no study has successfully generated a tradition not involving tool use in an established group. We seeded one of two rewarded alternative endpoints to a complex sequence of behaviour in each of two chimpanzee groups. Each sequence spread in the group in which it was seeded, with many individuals unambiguously adopting the sequence demonstrated by a group member. In one group, the alternative sequence was discovered by a low ranking female, but was not learned by others. Since the action-sequences lacked meaning before the experiment and had no logical connection with reward, chimpanzees must have extracted both the form and benefits of these sequences through observation of others.  
  Address Living Links, Yerkes National Primate Research Center, Atlanta, GA 30329, USA. kebonni@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17164200 Approved no  
  Call Number refbase @ user @ Serial 157  
Permanent link to this record
 

 
Author Evans, C.S.; Evans, L. doi  openurl
  Title Representational signalling in birds Type Journal Article
  Year 2007 Publication Biology Letters Abbreviated Journal  
  Volume 3 Issue 1 Pages 8-11  
  Keywords  
  Abstract Some animals give specific calls when they discover food or detect a particular type of predator. Companions respond with food-searching behaviour or by adopting appropriate escape responses. These signals thus seem to denote objects in the environment, but this specific mechanism has only been demonstrated for monkey alarm calls. We manipulated whether fowl (Gallus gallus) had recently found a small quantity of preferred food and then tested for a specific interaction between this event and their subsequent response to playback of food calls. In one treatment, food calls thus potentially provided information about the immediate environment, while in the other the putative message was redundant with individual experience. Food calls evoked substrate searching, but only if the hens had not recently discovered food. An identical manipulation had no effect on responses to an acoustically matched control call. These results show that chicken food calls are representational signals: they stimulate retrieval of information about a class of external events. This is the first such demonstration for any non-primate species. Representational signalling is hence more taxonomically widespread than has previously been thought, suggesting that it may be the product of common social factors, rather than an attribute of a particular phylogenetic lineage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3523  
Permanent link to this record
 

 
Author Hirsch, B.T. doi  openurl
  Title Costs and benefits of within-group spatial position: a feeding competition model Type Journal Article
  Year 2007 Publication The Quarterly review of biology Abbreviated Journal Q Rev Biol  
  Volume 82 Issue 1 Pages 9-27  
  Keywords Animals; Competitive Behavior/*physiology; Dominance-Subordination; Feeding Behavior/*physiology/*psychology; Population Dynamics; Predatory Behavior/*physiology  
  Abstract An animal's within-group spatial position has several important fitness consequences. Risk of predation, time spent engaging in antipredatory behavior and feeding competition can all vary with respect to spatial position. Previous research has found evidence that feeding rates are higher at the group edge in many species, but these studies have not represented the entire breadth of dietary diversity and ecological situations faced by many animals. In particular the presence of concentrated, defendable food patches can lead to increased feeding rates by dominants in the center of the group that are able to monopolize or defend these areas. To fully understand the tradeoffs of within-group spatial position in relation to a variety of factors, it is important to be able to predict where individuals should preferably position themselves in relation to feeding rates and food competition. A qualitative model is presented here to predict how food depletion time, abundance of food patches within a group, and the presence of prior knowledge of feeding sites affect the payoffs of different within-group spatial positions for dominant and subordinate animals. In general, when feeding on small abundant food items, individuals at the front edge of the group should have higher foraging success. When feeding on slowly depleted, rare food items, dominants will often have the highest feeding rates in the center of the group. Between these two extreme points of a continuum, an individual's optimal spatial position is predicted to be influenced by an additional combination of factors, such as group size, group spread, satiation rates, and the presence of producer-scrounger tactics.  
  Address Department of Anthropology, Stony Brook University Stony Brook, New York 11794, USA. BTHIRSCH@IC.SUNYSB.EDU  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-5770 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17354992 Approved no  
  Call Number refbase @ user @ Serial 803  
Permanent link to this record
 

 
Author Cameron, E.Z.; du Toit, J.T. doi  openurl
  Title Winning by a neck: tall giraffes avoid competing with shorter browsers Type Journal Article
  Year 2007 Publication The American naturalist Abbreviated Journal Am Nat  
  Volume 169 Issue 1 Pages 130-135  
  Keywords Acacia/growth & development; Animals; Feeding Behavior/*physiology; Neck/*anatomy & histology; Plant Leaves/growth & development; Ruminants/*anatomy & histology/*physiology; South Africa  
  Abstract With their vertically elongated body form, giraffes generally feed above the level of other browsers within the savanna browsing guild, despite having access to foliage at lower levels. They ingest more leaf mass per bite when foraging high in the tree, perhaps because smaller, more selective browsers deplete shoots at lower levels or because trees differentially allocate resources to promote shoot growth in the upper canopy. We erected exclosures around individual Acacia nigrescens trees in the greater Kruger ecosystem, South Africa. After a complete growing season, we found no differences in leaf biomass per shoot across height zones in excluded trees but significant differences in control trees. We conclude that giraffes preferentially browse at high levels in the canopy to avoid competition with smaller browsers. Our findings are analogous with those from studies of grazing guilds and demonstrate that resource partitioning can be driven by competition when smaller foragers displace larger foragers from shared resources. This provides the first experimental support for the classic evolutionary hypothesis that vertical elongation of the giraffe body is an outcome of competition within the browsing ungulate guild.  
  Address Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa. ezcameron@zoology.up.ac.za  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1537-5323 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17206591 Approved no  
  Call Number refbase @ user @ Serial 410  
Permanent link to this record
 

 
Author Austin, N.P.; Rogers, L.J. doi  openurl
  Title Asymmetry of flight and escape turning responses in horses Type Journal Article
  Year 2007 Publication Laterality Abbreviated Journal Laterality  
  Volume 12 Issue 5 Pages 464-474  
  Keywords  
  Abstract We investigated whether horses display greater reactivity to a novel stimulus presented in the left compared to the right monocular visual field, and whether a population bias exists for escape turning when the same stimulus was presented binocularly. Domestic horses (N=30) were tested on three occasions by a person opening an umbrella five metres away and then approaching. The distance each horse moved away before stopping was measured. Distance was greatest for approach on the left side, indicating right hemisphere control of flight behaviour, and thus followed the same pattern found previously in other species. When order of monocular presentation was considered, an asymmetry was detected. Horses tested initially on the left side exhibited greater reactivity for left approach, whereas horses tested on the right side first displayed no side difference in reactivity. Perhaps left hemisphere inhibition of flight response allowed horses to learn that the stimulus posed no threat and this information was transferred to the right hemisphere. No population bias existed for the direction of escape turning, but horses that turned to the right when approached from the front were found to exhibit longer flight distances than those that turned to the left.  
  Address University of New England, Armidale, NSW, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1357-650X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17712716 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4304  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print