|   | 
Details
   web
Record
Author (up) Viscido, S.V.; Miller, M.; Wethey, D.S.
Title The dilemma of the selfish herd: the search for a realistic movement rule Type Journal Article
Year 2002 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.
Volume 217 Issue 2 Pages 183-194
Keywords Animals; *Behavior, Animal; *Mass Behavior; Models, Biological; *Motor Activity; Predatory Behavior
Abstract The selfish herd hypothesis predicts that aggregations form because individuals move toward one another to minimize their own predation risk. The “dilemma of the selfish herd” is that movement rules that are easy for individuals to follow, fail to produce true aggregations, while rules that produce aggregations require individual behavior so complex that one may doubt most animals can follow them. If natural selection at the individual level is responsible for herding behavior, a solution to the dilemma must exist. Using computer simulations, we examined four different movement rules. Relative predation risk was different for all four movement rules (p<0.05). We defined three criteria for measuring the quality of a movement rule. A good movement rule should (a) be statistically likely to benefit an individual that follows it, (b) be something we can imagine most animals are capable of following, and (c) result in a centrally compact flock. The local crowded horizon rule, which allowed individuals to take the positions of many flock-mates into account, but decreased the influence of flock-mates with distance, best satisfied these criteria. The local crowded horizon rule was very sensitive to the animal's perceptive ability. Therefore, the animal's ability to detect its neighbors is an important factor in the dynamics of group formation.
Address Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA. viscido@u.washington.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5193 ISBN Medium
Area Expedition Conference
Notes PMID:12202112 Approved no
Call Number refbase @ user @ Serial 554
Permanent link to this record