|   | 
Details
   web
Records
Author Sarter, M.
Title (up) Animal cognition: defining the issues Type Journal Article
Year 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 28 Issue 7 Pages 645-650
Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Humans; *Models, Animal; Psychopharmacology/methods; Reproducibility of Results
Abstract The assessment of cognitive functions in rodents represents a critical experimental variable in many research fields, ranging from the basic cognitive neurosciences to psychopharmacology and neurotoxicology. The increasing use of animal behavioral tests as 'assays' for the assessment of effects on learning and memory has resulted in a considerable heterogeneity of data, particularly in the field of behavioral and psycho pharmacology. The limited predictive validity of changes in behavioral performance observed in standard animal tests of learning and memory indicates that a renewed effort to scrutinize the validity of these tests is warranted. In humans, levels of processing (effortful vs. automatic) and categories of information (procedural vs. episodic/declarative) are important variables of cognitive operations. The design of tasks that assess the recall of 'episodic' or 'declarative' information appears to represent a particular challenge for research using laboratory rodents. For example, the hypothesis that changes in inspection time for a previously encountered place or object are based on the recall of declarative/episodic information requires substantiation. In order to generalize findings on the effects of neuronal or pharmacological manipulations on learning and memory, obtained from one species and one task, to other species and other tasks, the mediating role of important sets of variables which influence learning and memory (e.g. attentional, affective) needs to be determined. Similar to the view that a neuronal manipulation (e.g. a lesion) represents a theory of the condition modeled (e.g. a degenerative disorder), an animal behavioral task represents a theory of the behavioral/cognitive process of interest. Therefore, the test of hypotheses regarding the validity of procedures used to assess cognitive functions in animals is an inherent part of the research process.
Address Department of Psychology, University of Michigan, 4032 East Hall, 525 E. University Avenue, Ann Arbor, MI 48109-1109, USA. msarter@umich.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:15555674 Approved no
Call Number Equine Behaviour @ team @ Serial 2804
Permanent link to this record
 

 
Author Thomas R. Zentall
Title (up) Animal Cognition: The Bridge BetweenAnimal Learning and Human Cognition Type Journal Article
Year 1999 Publication Psychological Science Abbreviated Journal
Volume 10 Issue Pages 206-208
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3481
Permanent link to this record
 

 
Author Terrace, H.S.
Title (up) Animal Cognition: Thinking without Language Type Journal Article
Year 1985 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934-1990) Abbreviated Journal
Volume 308 Issue 1135 Pages 113-128
Keywords
Abstract Recent attempts to teach apes rudimentary grammatical skills have produced negative results. The basic obstacle appears to be at the level of the individual symbol which, for apes, functions only as a demand. Evidence is lacking that apes can use symbols as names, that is, as a means of simply transmitting information. Even though non-human animals lack linguistic competence, much evidence has recently accumulated that a variety of animals can represent particular features of their environment. What then is the non-verbal nature of animal representations? This question will be discussed with reference to the following findings of studies of serial learning by pigeons. While learning to produce a particular sequence of four elements (colours), pigeons also acquire knowledge about the relation between non-adjacent elements and about the ordinal position of a particular element. Learning to produce a particular sequence also facilitates the discrimination of that sequence from other sequences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3522
Permanent link to this record
 

 
Author de Waal, F.B.M.
Title (up) Animal communication: panel discussion Type Journal Article
Year 2003 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 1000 Issue Pages 79-87
Keywords Acoustics; Affect; *Animal Communication; Animals
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:14766621 Approved no
Call Number refbase @ user @ Serial 176
Permanent link to this record
 

 
Author McLaren I.P.L.
Title (up) Animal Learning and Cognition: A neural network approach Type Journal Article
Year 1998 Publication Trends in Cognitive Sciences Abbreviated Journal Trends. Cognit. Sci.
Volume 2 Issue Pages 236-236
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3464
Permanent link to this record
 

 
Author Branchi, I.; Bichler, Z.; Berger-Sweeney, J.; Ricceri, L.
Title (up) Animal models of mental retardation: from gene to cognitive function Type Journal Article
Year 2003 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 27 Issue 1-2 Pages 141-153
Keywords Animals; Animals, Genetically Modified/growth & development; Behavior/physiology; Behavior, Animal; Brain/*growth & development; Cognition/*physiology; *Disease Models, Animal; Environment; Genes; Genetic Diseases, Inborn/physiopathology; Humans; Mental Retardation/classification/*genetics/*physiopathology
Abstract About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
Address Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Roma, Italy. branchi@iss.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:12732230 Approved no
Call Number Equine Behaviour @ team @ Serial 2805
Permanent link to this record
 

 
Author Griffin, D.R.
Title (up) Animals know more than we used to think Type
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 9 Pages 4833-4834
Keywords Animal Communication; Animals; Attention/physiology; Brain/physiology; Choice Behavior/physiology; Cognition/*physiology; Humans; Macaca mulatta/physiology/*psychology; Memory/*physiology; Optic Disk/physiology; Psychological Tests
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11320232 Approved no
Call Number Equine Behaviour @ team @ Serial 2823
Permanent link to this record
 

 
Author Watts, J.M.
Title (up) Animats: computer-simulated animals in behavioral research Type Journal Article
Year 1998 Publication Journal of Animal Science Abbreviated Journal J. Anim Sci.
Volume 76 Issue 10 Pages 2596-2604
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 2936
Permanent link to this record
 

 
Author Mulcahy, N.J.; Call, J.
Title (up) Apes save tools for future use Type Journal Article
Year 2006 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 312 Issue 5776 Pages 1038-1040
Keywords Animals; Association Learning; *Cognition; *Evolution; *Mental Processes; *Pan paniscus; Pan troglodytes; *Pongo pygmaeus
Abstract Planning for future needs, not just current ones, is one of the most formidable human cognitive achievements. Whether this skill is a uniquely human adaptation is a controversial issue. In a study we conducted, bonobos and orangutans selected, transported, and saved appropriate tools above baseline levels to use them 1 hour later (experiment 1). Experiment 2 extended these results to a 14-hour delay between collecting and using the tools. Experiment 3 showed that seeing the apparatus during tool selection was not necessary to succeed. These findings suggest that the precursor skills for planning for the future evolved in great apes before 14 million years ago, when all extant great ape species shared a common ancestor.
Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-9203 ISBN Medium
Area Expedition Conference
Notes PMID:16709782 Approved no
Call Number refbase @ user @ Serial 466
Permanent link to this record
 

 
Author McBride, S.D.; Parker, M.O.; Roberts, K.; Hemmings, A.
Title (up) Applied neurophysiology of the horse; implications for training, husbandry and welfare Type Journal Article
Year 2017 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 190 Issue Pages 90-101
Keywords Horse; Neurophysiology; Behaviour; Endophenotype; Equitation science; Welfare
Abstract Understanding the neural circuits underlying equine behaviour has the potential to help optimise strategies of husbandry and training. This review discusses two areas of neurophysiological research in a range of species and relates this information to the horse. The first discussion focuses on mechanisms of learning and motivation and assesses how this information can be applied to improve the training of the horse. The second concerns the identification of the equine neurophysiological phenotype, through behavioural and genetic probes, as a way of improving strategies for optimal equine husbandry and training success. The review finishes by identifying directions for future research with an emphasis on how neurophysiological systems (and thus behaviour) can be modified through strategic husbandry. This review highlights how a neurophysioloigical understanding of horse behaviour can play an important role in attaining the primary objectives of equitation science as well as improving the welfare of the horse.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1591 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6627
Permanent link to this record