|   | 
Details
   web
Records
Author Biegler, R.; McGregor, A.; Krebs, J.R.; Healy, S.D.
Title (up) A larger hippocampus is associated with longer-lasting spatial memory Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 12 Pages 6941-6944
Keywords
Abstract Volumetric studies in a range of animals (London taxi-drivers, polygynous male voles, nest-parasitic female cowbirds, and a number of food-storing birds) have shown that the size of the hippocampus, a brain region essential to learning and memory, is correlated with tasks involving an extra demand for spatial learning and memory. In this paper, we report the quantitative advantage that food storers gain from such an enlargement. Coal tits () a food-storing species, performed better than great tits (), a nonstoring species, on a task that assessed memory persistence but not on a task that assessed memory resolution or on one that tested memory capacity. These results show that the advantage to the food-storing species associated with an enlarged hippocampus is one of memory persistence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1073/pnas.121034798 Approved no
Call Number Equine Behaviour @ team @ Serial 4743
Permanent link to this record
 

 
Author Leadbeater, E.; Dawson, E.H.
Title (up) A social insect perspective on the evolution of social learning mechanisms Type Journal Article
Year 2017 Publication Proceedings of the National Academy of Sciences Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 114 Issue 30 Pages 7838-7845
Keywords
Abstract The social world offers a wealth of opportunities to learn from others, and across the animal kingdom individuals capitalize on those opportunities. Here, we explore the role of natural selection in shaping the processes that underlie social information use, using a suite of experiments on social insects as case studies. We illustrate how an associative framework can encompass complex, context-specific social learning in the insect world and beyond, and based on the hypothesis that evolution acts to modify the associative process, suggest potential pathways by which social information use could evolve to become more efficient and effective. Social insects are distant relatives of vertebrate social learners, but the research we describe highlights routes by which natural selection could coopt similar cognitive raw material across the animal kingdom.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1073/pnas.1620744114 Approved no
Call Number Equine Behaviour @ team @ Serial 6189
Permanent link to this record
 

 
Author Hoy, R.
Title (up) Animal awareness: The (un)binding of multisensory cues in decision making by animals Type Journal Article
Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 102 Issue 7 Pages 2267-2268
Keywords Animals; Anura/physiology; *Awareness; *Behavior, Animal; Decision Making; Female; Male; Perception; Sensation
Abstract
Address Department of Neurobiology and Behavior, 215 Mudd Hall, Cornell University, Ithaca, NY 14850, USA. rrh3@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:15703288 Approved no
Call Number Equine Behaviour @ team @ Serial 2821
Permanent link to this record
 

 
Author Griffin, D.R.
Title (up) Animals know more than we used to think Type
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 9 Pages 4833-4834
Keywords Animal Communication; Animals; Attention/physiology; Brain/physiology; Choice Behavior/physiology; Cognition/*physiology; Humans; Macaca mulatta/physiology/*psychology; Memory/*physiology; Optic Disk/physiology; Psychological Tests
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11320232 Approved no
Call Number Equine Behaviour @ team @ Serial 2823
Permanent link to this record
 

 
Author Sol, D.; Duncan, R.P.; Blackburn, T.M.; Cassey, P.; Lefebvre, L.
Title (up) Big brains, enhanced cognition, and response of birds to novel environments Type Journal Article
Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 102 Issue 15 Pages 5460-5465
Keywords
Abstract The widely held hypothesis that enlarged brains have evolved as an adaptation to cope with novel or altered environmental conditions lacks firm empirical support. Here, we test this hypothesis for a major animal group (birds) by examining whether large-brained species show higher survival than small-brained species when introduced to nonnative locations. Using a global database documenting the outcome of >600 introduction events, we confirm that avian species with larger brains, relative to their body mass, tend to be more successful at establishing themselves in novel environments. Moreover, we provide evidence that larger brains help birds respond to novel conditions by enhancing their innovation propensity rather than indirectly through noncognitive mechanisms. These findings provide strong evidence for the hypothesis that enlarged brains function, and hence may have evolved, to deal with changes in the environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1073/pnas.0408145102 Approved no
Call Number Equine Behaviour @ team @ Serial 4739
Permanent link to this record
 

 
Author Harvey, P.H.; Clutton-Brock, T.H.; Mace, G.M.
Title (up) Brain size and ecology in small mammals and primates Type Journal Article
Year 1980 Publication Proceedings of the National Academy of Sciences Abbreviated Journal PNAS
Volume 77 Issue 7 Pages 4387-4389
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5456
Permanent link to this record
 

 
Author Weisbecker, V.; Goswami, A.
Title (up) Brain size, life history, and metabolism at the marsupial/placental dichotomy Type Journal Article
Year 2010 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 107 Issue 37 Pages 16216-16221
Keywords
Abstract The evolution of mammalian brain size is directly linked with the evolution of the brain's unique structure and performance. Both maternal life history investment traits and basal metabolic rate (BMR) correlate with relative brain size, but current hypotheses regarding the details of these relationships are based largely on placental mammals. Using encephalization quotients, partial correlation analyses, and bivariate regressions relating brain size to maternal investment times and BMR, we provide a direct quantitative comparison of brain size evolution in marsupials and placentals, whose reproduction and metabolism differ extensively. Our results show that the misconception that marsupials are systematically smaller-brained than placentals is driven by the inclusion of one large-brained placental clade, Primates. Marsupial and placental brain size partial correlations differ in that marsupials lack a partial correlation of BMR with brain size. This contradicts hypotheses stating that the maintenance of relatively larger brains requires higher BMRs. We suggest that a positive BMR–brain size correlation is a placental trait related to the intimate physiological contact between mother and offspring during gestation. Marsupials instead achieve brain sizes comparable to placentals through extended lactation. Comparison with avian brain evolution suggests that placental brain size should be constrained due to placentals’ relative precociality, as has been hypothesized for precocial bird hatchlings. We propose that placentals circumvent this constraint because of their focus on gestation, as opposed to the marsupial emphasis on lactation. Marsupials represent a less constrained condition, demonstrating that hypotheses regarding placental brain size evolution cannot be generalized to all mammals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5338
Permanent link to this record
 

 
Author Finarelli, J.A.; Flynn, J.J.
Title (up) Brain-size evolution and sociality in Carnivora Type Journal Article
Year 2009 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 106 Issue 23 Pages 9345-9349
Keywords
Abstract Increased encephalization, or larger brain volume relative to body mass, is a repeated theme in vertebrate evolution. Here we present an extensive sampling of relative brain sizes in fossil and extant taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, and their relatives). By using Akaike Information Criterion model selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific evolutionary transformations in encephalization allometries. These evolutionary transformations include multiple independent encephalization increases and decreases in addition to a remarkably static basal Carnivora allometry that characterizes much of the suborder Feliformia and some taxa in the suborder Caniformia across much of their evolutionary history, emphasizing that complex processes shaped the modern distribution of encephalization across Carnivora. This analysis also permits critical evaluation of the social brain hypothesis (SBH), which predicts a close association between sociality and increased encephalization. Previous analyses based on living species alone appeared to support the SBH with respect to Carnivora, but those results are entirely dependent on data from modern Canidae (dogs). Incorporation of fossil data further reveals that no association exists between sociality and encephalization across Carnivora and that support for sociality as a causal agent of encephalization increase disappears for this clade.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5337
Permanent link to this record
 

 
Author Uzawa, T.; Akiyama, S.; Kimura, T.; Takahashi, S.; Ishimori, K.; Morishima, I.; Fujisawa, T.
Title (up) Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of alpha-helical content and compactness Type Journal Article
Year 2004 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 101 Issue 5 Pages 1171-1176
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Cytochromes c/chemistry; Horses; Myoglobin/*chemistry; *Protein Folding; *Protein Structure, Secondary; Scattering, Radiation
Abstract The characterization of protein folding dynamics in terms of secondary and tertiary structures is important in elucidating the features of intraprotein interactions that lead to specific folded structures. Apomyoglobin (apoMb), possessing seven helices termed A-E, G, and H in the native state, has a folding intermediate composed of the A, G, and H helices, whose formation in the submillisecond time domain has not been clearly characterized. In this study, we used a rapid-mixing device combined with circular dichroism and small-angle x-ray scattering to observe the submillisecond folding dynamics of apoMb in terms of helical content (f(H)) and radius of gyration (R(g)), respectively. The folding of apoMb from the acid-unfolded state at pH 2.2 was initiated by a pH jump to 6.0. A significant collapse, corresponding to approximately 50% of the overall change in R(g) from the unfolded to native conformation, was observed within 300 micros after the pH jump. The collapsed intermediate has a f(H) of 33% and a globular shape that involves >80% of all its atoms. Subsequently, a stepwise helix formation was detected, which was interpreted to be associated with a conformational search for the correct tertiary contacts. The characterized folding dynamics of apoMb indicates the importance of the initial collapse event, which is suggested to facilitate the subsequent conformational search and the helix formation leading to the native structure.
Address Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:14711991 Approved no
Call Number Equine Behaviour @ team @ Serial 3779
Permanent link to this record
 

 
Author Amé, J.-M.; Halloy, J.; Rivault, C.; Detrain, C.; Deneubourg, J.L.
Title (up) Collegial decision making based on social amplification leads to optimal group formation Type Journal Article
Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 103 Issue 15 Pages 5835-5840
Keywords Animals; Blattellidae/*physiology; Choice Behavior; Decision Making; Leadership; *Social Behavior
Abstract Group-living animals are often faced with choosing between one or more alternative resource sites. A central question in such collective decision making includes determining which individuals induce the decision and when. This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership. We identify a simple mechanism whereby a decision is taken on the move with limited information and signaling and without comparison of available opportunities. This mechanism leads to optimal mean benefit for group individuals. Our model points to a generic self-organized collective decision-making process independent of animal species.
Address Service d'Ecologie Sociale CP231, Universite Libre de Bruxelles, Avenue F. D. Roosevelt 50, B-1050 Brussels, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16581903 Approved no
Call Number Equine Behaviour @ team @ Serial 2042
Permanent link to this record