|   | 
Details
   web
Records
Author (up) Plotnik, J.M.; de Waal, F.B.M.; Reiss, D.
Title Self-recognition in an Asian elephant Type Journal Article
Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 103 Issue 45 Pages 17053-17057
Keywords Animals; Asia; *Behavior, Animal; Cognition; Elephants/*psychology; Female; Photic Stimulation
Abstract Considered an indicator of self-awareness, mirror self-recognition (MSR) has long seemed limited to humans and apes. In both phylogeny and human ontogeny, MSR is thought to correlate with higher forms of empathy and altruistic behavior. Apart from humans and apes, dolphins and elephants are also known for such capacities. After the recent discovery of MSR in dolphins (Tursiops truncatus), elephants thus were the next logical candidate species. We exposed three Asian elephants (Elephas maximus) to a large mirror to investigate their responses. Animals that possess MSR typically progress through four stages of behavior when facing a mirror: (i) social responses, (ii) physical inspection (e.g., looking behind the mirror), (iii) repetitive mirror-testing behavior, and (iv) realization of seeing themselves. Visible marks and invisible sham-marks were applied to the elephants' heads to test whether they would pass the litmus “mark test” for MSR in which an individual spontaneously uses a mirror to touch an otherwise imperceptible mark on its own body. Here, we report a successful MSR elephant study and report striking parallels in the progression of responses to mirrors among apes, dolphins, and elephants. These parallels suggest convergent cognitive evolution most likely related to complex sociality and cooperation.
Address Living Links, Yerkes National Primate Research Center, and Department of Psychology, Emory University, 532 North Kligo Circle, Atlanta, GA 30322, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:17075063 Approved no
Call Number refbase @ user @ Serial 408
Permanent link to this record
 

 
Author (up) Proops, L.; McComb, K.; Reby, D.
Title Cross-modal individual recognition in domestic horses (Equus caballus) Type Journal Article
Year 2009 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 106 Issue 3 Pages 947-951
Keywords animal cognition vocal communication social behavior playback experiment expectancy violation
Abstract Individual recognition is considered a complex process and, although it is believed to be widespread across animal taxa, the cognitive mechanisms underlying this ability are poorly understood. An essential feature of individual recognition in humans is that it is cross-modal, allowing the matching of current sensory cues to identity with stored information about that specific individual from other modalities. Here, we use a cross-modal expectancy violation paradigm to provide a clear and systematic demonstration of cross-modal individual recognition in a nonhuman animal: the domestic horse. Subjects watched a herd member being led past them before the individual went of view, and a call from that or a different associate was played from a loudspeaker positioned close to the point of disappearance. When horses were shown one associate and then the call of a different associate was played, they responded more quickly and looked significantly longer in the direction of the call than when the call matched the herd member just seen, an indication that the incongruent combination violated their expectations. Thus, horses appear to possess a cross-modal representation of known individuals containing unique auditory and visual/olfactory information. Our paradigm could provide a powerful way to study individual recognition across a wide range of species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1073/pnas.0809127105 Approved no
Call Number Equine Behaviour @ team @ Serial 4689
Permanent link to this record
 

 
Author (up) Pruvost, M.; Bellone, R.; Benecke, N.; Sandoval-Castellanos, E.; Cieslak, M.; Kuznetsova, T.; Morales-Muñiz, A.; O'Connor, T.; Reissmann, M.; Hofreiter, M.; Ludwig, A.
Title Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art Type Journal Article
Year 2011 Publication Proceedings of the National Academy of Sciences Abbreviated Journal
Volume 108 Issue 46 Pages 18626-18630
Keywords
Abstract Archaeologists often argue whether Paleolithic works of art, cave paintings in particular, constitute reflections of the natural environment of humans at the time. They also debate the extent to which these paintings actually contain creative artistic expression, reflect the phenotypic variation of the surrounding environment, or focus on rare phenotypes. The famous paintings “The Dappled Horses of Pech-Merle,” depicting spotted horses on the walls of a cave in Pech-Merle, France, date back ~25,000 y, but the coat pattern portrayed in these paintings is remarkably similar to a pattern known as “leopard” in modern horses. We have genotyped nine coat-color loci in 31 predomestic horses from Siberia, Eastern and Western Europe, and the Iberian Peninsula. Eighteen horses had bay coat color, seven were black, and six shared an allele associated with the leopard complex spotting (LP), representing the only spotted phenotype that has been discovered in wild, predomestic horses thus far. LP was detected in four Pleistocene and two Copper Age samples from Western and Eastern Europe, respectively. In contrast, this phenotype was absent from predomestic Siberian horses. Thus, all horse color phenotypes that seem to be distinguishable in cave paintings have now been found to exist in prehistoric horse populations, suggesting that cave paintings of this species represent remarkably realistic depictions of the animals shown. This finding lends support to hypotheses arguing that cave paintings might have contained less of a symbolic or transcendental connotation than often assumed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1073/pnas.1108982108 Approved no
Call Number Equine Behaviour @ team @ Serial 5700
Permanent link to this record
 

 
Author (up) Reader, S.M.; Laland, K.N.
Title Social intelligence, innovation, and enhanced brain size in primates Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 7 Pages 4436-4441
Keywords Animals; Brain/*anatomy & histology; Evolution; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior
Abstract Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and “intelligence” are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes of tool use established that social learning, innovation, and tool use frequencies are positively correlated with species' relative and absolute “executive” brain volumes, after controlling for phylogeny and research effort. Moreover, innovation and social learning frequencies covary across species, in conflict with the view that there is an evolutionary tradeoff between reliance on individual experience and social cues. These findings provide an empirical link between behavioral innovation, social learning capacities, and brain size in mammals. The ability to learn from others, invent new behaviors, and use tools may have played pivotal roles in primate brain evolution.
Address Department of Zoology, University of Cambridge, High Street, Madingley, Cambridge CB3 8AA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11891325 Approved no
Call Number Serial 2149
Permanent link to this record
 

 
Author (up) Reiss, D.; Marino, L.
Title Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 10 Pages 5937-5942
Keywords Animals; *Cognition; Dolphins/*physiology; *Visual Perception
Abstract The ability to recognize oneself in a mirror is an exceedingly rare capacity in the animal kingdom. To date, only humans and great apes have shown convincing evidence of mirror self-recognition. Two dolphins were exposed to reflective surfaces, and both demonstrated responses consistent with the use of the mirror to investigate marked parts of the body. This ability to use a mirror to inspect parts of the body is a striking example of evolutionary convergence with great apes and humans.
Address Osborn Laboratories of Marine Sciences, New York Aquarium, Wildlife Conservation Society, Brooklyn, NY 11224, USA. dlr28@columbia.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11331768 Approved no
Call Number Equine Behaviour @ team @ Serial 2822
Permanent link to this record
 

 
Author (up) Scheffer, M.; van Nes, E.H.
Title Self-organized similarity, the evolutionary emergence of groups of similar species Type Journal Article
Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 103 Issue 16 Pages 6230-6235
Keywords Animals; *Competitive Behavior; *Ecosystem; *Evolution; *Models, Biological
Abstract Ecologists have long been puzzled by the fact that there are so many similar species in nature. Here we show that self-organized clusters of look-a-likes may emerge spontaneously from coevolution of competitors. The explanation is that there are two alternative ways to survive together: being sufficiently different or being sufficiently similar. Using a model based on classical competition theory, we demonstrate a tendency for evolutionary emergence of regularly spaced lumps of similar species along a niche axis. Indeed, such lumpy patterns are commonly observed in size distributions of organisms ranging from algae, zooplankton, and beetles to birds and mammals, and could not be well explained by earlier theory. Our results suggest that these patterns may represent self-constructed niches emerging from competitive interactions. A corollary of our findings is that, whereas in species-poor communities sympatric speciation and invasion of open niches is possible, species-saturated communities may be characterized by convergent evolution and invasion by look-a-likes.
Address Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 8080, 6700 DD, Wageningen, The Netherlands. marten.scheffer@wur.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16585519 Approved no
Call Number refbase @ user @ Serial 510
Permanent link to this record
 

 
Author (up) Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A.
Title Long-term fate of nitrate fertilizer in agricultural soils Type Journal Article
Year 2013 Publication Proceedings of the National Academy of Sciences Abbreviated Journal PNAS
Volume Issue Pages
Keywords
Abstract Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere–hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three–decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61–65% of the applied fertilizers N were taken up by plants, whereas 12–15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8–12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of 15N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5730
Permanent link to this record
 

 
Author (up) Seyfarth, R.M.; Cheney, D.L.
Title What are big brains for? Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 7 Pages 4141-4142
Keywords Animals; Brain/*anatomy & histology; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior
Abstract
Address Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA. seyfarth@psych.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11929989 Approved no
Call Number refbase @ user @ Serial 692
Permanent link to this record
 

 
Author (up) Sol, D.; Duncan, R.P.; Blackburn, T.M.; Cassey, P.; Lefebvre, L.
Title Big brains, enhanced cognition, and response of birds to novel environments Type Journal Article
Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 102 Issue 15 Pages 5460-5465
Keywords
Abstract The widely held hypothesis that enlarged brains have evolved as an adaptation to cope with novel or altered environmental conditions lacks firm empirical support. Here, we test this hypothesis for a major animal group (birds) by examining whether large-brained species show higher survival than small-brained species when introduced to nonnative locations. Using a global database documenting the outcome of >600 introduction events, we confirm that avian species with larger brains, relative to their body mass, tend to be more successful at establishing themselves in novel environments. Moreover, we provide evidence that larger brains help birds respond to novel conditions by enhancing their innovation propensity rather than indirectly through noncognitive mechanisms. These findings provide strong evidence for the hypothesis that enlarged brains function, and hence may have evolved, to deal with changes in the environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1073/pnas.0408145102 Approved no
Call Number Equine Behaviour @ team @ Serial 4739
Permanent link to this record
 

 
Author (up) Uzawa, T.; Akiyama, S.; Kimura, T.; Takahashi, S.; Ishimori, K.; Morishima, I.; Fujisawa, T.
Title Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of alpha-helical content and compactness Type Journal Article
Year 2004 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 101 Issue 5 Pages 1171-1176
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Cytochromes c/chemistry; Horses; Myoglobin/*chemistry; *Protein Folding; *Protein Structure, Secondary; Scattering, Radiation
Abstract The characterization of protein folding dynamics in terms of secondary and tertiary structures is important in elucidating the features of intraprotein interactions that lead to specific folded structures. Apomyoglobin (apoMb), possessing seven helices termed A-E, G, and H in the native state, has a folding intermediate composed of the A, G, and H helices, whose formation in the submillisecond time domain has not been clearly characterized. In this study, we used a rapid-mixing device combined with circular dichroism and small-angle x-ray scattering to observe the submillisecond folding dynamics of apoMb in terms of helical content (f(H)) and radius of gyration (R(g)), respectively. The folding of apoMb from the acid-unfolded state at pH 2.2 was initiated by a pH jump to 6.0. A significant collapse, corresponding to approximately 50% of the overall change in R(g) from the unfolded to native conformation, was observed within 300 micros after the pH jump. The collapsed intermediate has a f(H) of 33% and a globular shape that involves >80% of all its atoms. Subsequently, a stepwise helix formation was detected, which was interpreted to be associated with a conformational search for the correct tertiary contacts. The characterized folding dynamics of apoMb indicates the importance of the initial collapse event, which is suggested to facilitate the subsequent conformational search and the helix formation leading to the native structure.
Address Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:14711991 Approved no
Call Number Equine Behaviour @ team @ Serial 3779
Permanent link to this record