|   | 
Details
   web
Records
Author Mettke-Hofmann, C.; Gwinner, E.
Title Long-term memory for a life on the move Type Journal Article
Year 2003 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 100 Issue 10 Pages 5863-5866
Keywords Animals; Germany; Israel; Memory/*physiology; Models, Biological; Periodicity; Songbirds/*physiology
Abstract Evidence is accumulating that cognitive abilities are shaped by the specific ecological conditions to which animals are exposed. Long-distance migratory birds may provide a striking example of this. Field observations have shown that, at least in some species, a substantial proportion of individuals return to the same breeding, wintering, and stopover sites in successive years. This observation suggests that migrants have evolved special cognitive abilities that enable them to accomplish these feats. Here we show that memory of a particular feeding site persisted for at least 12 months in a long-distance migrant, whereas a closely related nonmigrant could remember such a site for only 2 weeks. Thus, it seems that the migratory lifestyle has influenced the learning and memorizing capacities of migratory birds. These results build a bridge between field observations suggesting special memorization feats of migratory birds and previous neuroanatomical results from the same two species indicating an increase in relative hippocampal size from the first to the second year of life in the migrant but not in the nonmigrant.
Address (up) Max Planck Research Centre for Ornithology, Department of Biological Rhythms and Behaviour, Von-der-Tann-Strasse 7, 82346 Andechs, Germany. mettke-hofmann@erl.ornithol.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:12719527 Approved no
Call Number refbase @ user @ Serial 511
Permanent link to this record
 

 
Author Reiss, D.; Marino, L.
Title Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 10 Pages 5937-5942
Keywords Animals; *Cognition; Dolphins/*physiology; *Visual Perception
Abstract The ability to recognize oneself in a mirror is an exceedingly rare capacity in the animal kingdom. To date, only humans and great apes have shown convincing evidence of mirror self-recognition. Two dolphins were exposed to reflective surfaces, and both demonstrated responses consistent with the use of the mirror to investigate marked parts of the body. This ability to use a mirror to inspect parts of the body is a striking example of evolutionary convergence with great apes and humans.
Address (up) Osborn Laboratories of Marine Sciences, New York Aquarium, Wildlife Conservation Society, Brooklyn, NY 11224, USA. dlr28@columbia.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11331768 Approved no
Call Number Equine Behaviour @ team @ Serial 2822
Permanent link to this record
 

 
Author Ballew, R.M.; Sabelko, J.; Gruebele, M.
Title Direct observation of fast protein folding: the initial collapse of apomyoglobin Type Journal Article
Year 1996 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 93 Issue 12 Pages 5759-5764
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Horses; Kinetics; Muscle, Skeletal/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Infrared; Temperature
Abstract The rapid refolding dynamics of apomyoglobin are followed by a new temperature-jump fluorescence technique on a 15-ns to 0.5-ms time scale in vitro. The apparatus measures the protein-folding history in a single sweep in standard aqueous buffers. The earliest steps during folding to a compact state are observed and are complete in under 20 micros. Experiments on mutants and consideration of steady-state CD and fluorescence spectra indicate that the observed microsecond phase monitors assembly of an A x (H x G) helix subunit. Measurements at different viscosities indicate diffusive behavior even at low viscosities, in agreement with motions of a solvent-exposed protein during the initial collapse.
Address (up) School of Chemical Sciences and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, 61801, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:8650166 Approved no
Call Number Equine Behaviour @ team @ Serial 3798
Permanent link to this record
 

 
Author Hampton, R.R.
Title Rhesus monkeys know when they remember Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 9 Pages 5359-5362
Keywords Animals; Choice Behavior/physiology; Cognition/*physiology; Cues; Food Preferences/psychology; Macaca mulatta/*physiology/*psychology; Male; Memory/*physiology; Probability; Psychological Tests; Reproducibility of Results; Sensitivity and Specificity
Abstract Humans are consciously aware of some memories and can make verbal reports about these memories. Other memories cannot be brought to consciousness, even though they influence behavior. This conspicuous difference in access to memories is central in taxonomies of human memory systems but has been difficult to document in animal studies, suggesting that some forms of memory may be unique to humans. Here I show that rhesus macaque monkeys can report the presence or absence of memory. Although it is probably impossible to document subjective, conscious properties of memory in nonverbal animals, this result objectively demonstrates an important functional parallel with human conscious memory. Animals able to discern the presence and absence of memory should improve accuracy if allowed to decline memory tests when they have forgotten, and should decline tests most frequently when memory is attenuated experimentally. One of two monkeys examined unequivocally met these criteria under all test conditions, whereas the second monkey met them in all but one case. Probe tests were used to rule out “cueing” by a wide variety of environmental and behavioral stimuli, leaving detection of the absence of memory per se as the most likely mechanism underlying the monkeys' abilities to selectively decline memory tests when they had forgotten.
Address (up) Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Building 49, Room 1B-80, Bethesda, MD 20892, USA. robert@ln.nimh.nih.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11274360 Approved no
Call Number Equine Behaviour @ team @ Serial 2824
Permanent link to this record
 

 
Author Amé, J.-M.; Halloy, J.; Rivault, C.; Detrain, C.; Deneubourg, J.L.
Title Collegial decision making based on social amplification leads to optimal group formation Type Journal Article
Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 103 Issue 15 Pages 5835-5840
Keywords Animals; Blattellidae/*physiology; Choice Behavior; Decision Making; Leadership; *Social Behavior
Abstract Group-living animals are often faced with choosing between one or more alternative resource sites. A central question in such collective decision making includes determining which individuals induce the decision and when. This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership. We identify a simple mechanism whereby a decision is taken on the move with limited information and signaling and without comparison of available opportunities. This mechanism leads to optimal mean benefit for group individuals. Our model points to a generic self-organized collective decision-making process independent of animal species.
Address (up) Service d'Ecologie Sociale CP231, Universite Libre de Bruxelles, Avenue F. D. Roosevelt 50, B-1050 Brussels, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16581903 Approved no
Call Number Equine Behaviour @ team @ Serial 2042
Permanent link to this record