toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Dunbar, R.I.M.; Shultz, S. doi  openurl
  Title Understanding primate brain evolution Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 362 Issue 1480 Pages 649-658  
  Keywords  
  Abstract We present a detailed reanalysis of the comparative brain data for primates, and develop a model using path analysis that seeks to present the coevolution of primate brain (neocortex) and sociality within a broader ecological and life-history framework. We show that body size, basal metabolic rate and life history act as constraints on brain evolution and through this influence the coevolution of neocortex size and group size. However, they do not determine either of these variables, which appear to be locked in a tight coevolutionary system. We show that, within primates, this relationship is specific to the neocortex. Nonetheless, there are important constraints on brain evolution; we use path analysis to show that, in order to evolve a large neocortex, a species must first evolve a large brain to support that neocortex and this in turn requires adjustments in diet (to provide the energy needed) and life history (to allow sufficient time both for brain growth and for 'software' programming). We review a wider literature demonstrating a tight coevolutionary relationship between brain size and sociality in a range of mammalian taxa, but emphasize that the social brain hypothesis is not about the relationship between brain/neocortex size and group size per se; rather, it is about social complexity and we adduce evidence to support this. Finally, we consider the wider issue of how mammalian (and primate) brains evolve in order to localize the social effects.  
  Address British Academy Centenary Research Project, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK. rimd@liv.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17301028 Approved no  
  Call Number Serial 2099  
Permanent link to this record
 

 
Author (up) Holekamp, K.E.; Sakai, S.T.; Lundrigan, B.L. url  doi
openurl 
  Title Social intelligence in the spotted hyena (Crocuta crocuta) Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 362 Issue 1480 Pages 523-538  
  Keywords Anatomy, Comparative; Animals; Brain/*anatomy & histology; Cercopithecinae/anatomy & histology/*physiology; Decision Making/physiology; Hyaenidae/anatomy & histology/*physiology; *Intelligence; *Recognition (Psychology); *Social Behavior; Species Specificity  
  Abstract If the large brains and great intelligence characteristic of primates were favoured by selection pressures associated with life in complex societies, then cognitive abilities and nervous systems with primate-like attributes should have evolved convergently in non-primate mammals living in large, elaborate societies in which social dexterity enhances individual fitness. The societies of spotted hyenas are remarkably like those of cercopithecine primates with respect to size, structure and patterns of competition and cooperation. These similarities set an ideal stage for comparative analysis of social intelligence and nervous system organization. As in cercopithecine primates, spotted hyenas use multiple sensory modalities to recognize their kin and other conspecifics as individuals, they recognize third-party kin and rank relationships among their clan mates, and they use this knowledge adaptively during social decision making. However, hyenas appear to rely more intensively than primates on social facilitation and simple rules of thumb in social decision making. No evidence to date suggests that hyenas are capable of true imitation. Finally, it appears that the gross anatomy of the brain in spotted hyenas might resemble that in primates with respect to expansion of frontal cortex, presumed to be involved in the mediation of social behaviour.  
  Address Department of Zoology, Michigan State University, East Lansing, MI 48824, USA. holekamp@msu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17289649 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4719  
Permanent link to this record
 

 
Author (up) Sinha, A. doi  openurl
  Title Knowledge acquired and decisions made: triadic interactions during allogrooming in wild bonnet macaques, Macaca radiata Type Journal Article
  Year 1998 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 353 Issue 1368 Pages 619-631  
  Keywords Aggression; Animals; Cognition; Computer Simulation; Decision Making; Evolution; Female; Grooming; Logistic Models; Macaca radiata/*psychology; *Social Behavior; Social Dominance  
  Abstract The pressures of developing and maintaining intricate social relationships may have led to the evolution of enhanced cognitive abilities in many nonhuman primates. Knowledge of the dominance ranks and social relationships of other individuals, in particular, is important in evaluating one's position in the rank hierarchy and affiliative networks. Triadic interactions offer an excellent opportunity to examine whether decisions are taken by individuals on the basis of such knowledge. Allogrooming supplants among wild female bonnet macaques (macaca radiata) usually involved the subordinate female of a grooming dyad retreating at the approach of a female dominant to both members of the dyad. In a few exceptional cases, however, the dominant member of the dyad retreated; simple non-cognitive hypotheses involving dyadic rank differences and agonistic relationships failed to explain this phenomenon. Instead, retreat by the dominant individual was positively correlated with the social attractiveness of her subordinate companion (as measured by the duration of grooming received by the latter from other females in the troop). This suggests that not only does an individual evaluate relationships among other females, but does so on the basis of the amount of grooming received by them. Similarly, the frequency of approaches received by any female was correlated with her social attractiveness when she was the dominant member of the dyad, but not when she was the subordinate. This indicated that approaching females might be aware of the relative dominance ranks of the two allogrooming individuals. In logistic regression analyses, the probability of any individual retreating was found to be influenced more by her knowledge of her rank difference with both the other interactants, rather than by their absolute ranks. Moreover, information about social attractiveness appeared to be used in terms of correlated dominance ranks. The nature of knowledge acquired by bonnet macaque females may thus be egotistical in that other individuals are evaluated relative to oneself, integrative in that information about all other interactants is used simultaneously, and hierarchical in the ability to preferentially use certain categories of knowledge for the storage of related information from other domains.  
  Address National Centre for Biological Sciences, TIFR Centre, Bangalore, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9602536 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4362  
Permanent link to this record
 

 
Author (up) Terrace, H.S. doi  openurl
  Title Animal Cognition: Thinking without Language Type Journal Article
  Year 1985 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934-1990) Abbreviated Journal  
  Volume 308 Issue 1135 Pages 113-128  
  Keywords  
  Abstract Recent attempts to teach apes rudimentary grammatical skills have produced negative results. The basic obstacle appears to be at the level of the individual symbol which, for apes, functions only as a demand. Evidence is lacking that apes can use symbols as names, that is, as a means of simply transmitting information. Even though non-human animals lack linguistic competence, much evidence has recently accumulated that a variety of animals can represent particular features of their environment. What then is the non-verbal nature of animal representations? This question will be discussed with reference to the following findings of studies of serial learning by pigeons. While learning to produce a particular sequence of four elements (colours), pigeons also acquire knowledge about the relation between non-adjacent elements and about the ordinal position of a particular element. Learning to produce a particular sequence also facilitates the discrimination of that sequence from other sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3522  
Permanent link to this record
 

 
Author (up) Whiten, A.; van Schaik, C.P. doi  openurl
  Title The evolution of animal 'cultures' and social intelligence Type Journal Article
  Year 2007 Publication Philosophical transactions of the Royal Society of London. Series B, Biological sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 362 Issue 1480 Pages 603-620  
  Keywords  
  Abstract Decades-long field research has flowered into integrative studies that, together with experimental evidence for the requisite social learning capacities, have indicated a reliance on multiple traditions ('cultures') in a small number of species. It is increasingly evident that there is great variation in manifestations of social learning, tradition and culture among species, offering much scope for evolutionary analysis. Social learning has been identified in a range of vertebrate and invertebrate species, yet sustained traditions appear rarer, and the multiple traditions we call cultures are rarer still. Here, we examine relationships between this variation and both social intelligence-sophisticated information processing adapted to the social domain-and encephalization. First, we consider whether culture offers one particular confirmation of the social ('Machiavellian') intelligence hypothesis that certain kinds of social life (here, culture) select for intelligence: 'you need to be smart to sustain culture'. Phylogenetic comparisons, particularly focusing on our own study animals, the great apes, support this, but we also highlight some paradoxes in a broader taxonomic survey. Second, we use intraspecific variation to address the converse hypothesis that 'culture makes you smart', concluding that recent evidence for both chimpanzees and orang-utans support this proposition.  
  Address Centre for Social Learning and Cognitive Evolution, School of Psychology, University of St Andrews, St Andrews KY16 9JP, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17255007 Approved no  
  Call Number refbase @ user @ Serial 729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print