|   | 
Details
   web
Records
Author Harman, F.S.; Nicol, C.J.; Marin, H.E.; Ward, J.M.; Gonzalez, F.J.; Peters, J.M.
Title Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis Type Journal Article
Year 2004 Publication Nature medicine Abbreviated Journal Nat Med
Volume 10 Issue 5 Pages 481-483
Keywords (up) Animals; Azoxymethane/toxicity; Colonic Neoplasms/etiology/genetics/*prevention & control; Colonic Polyps/etiology/genetics/pathology/prevention & control; Disease Models, Animal; Mice; Mice, Knockout; Mice, Mutant Strains; Phenotype; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/*physiology; Transcription Factors/deficiency/genetics/*physiology
Abstract Peroxisome proliferator-activated receptor-delta (PPAR-delta; also known as PPAR-beta) is expressed at high levels in colon tumors, but its contribution to colon cancer is unclear. We examined the role of PPAR-delta in colon carcinogenesis using PPAR-delta-deficient (Ppard(-/-)) mice. In both the Min mutant and chemically induced mouse models, colon polyp formation was significantly greater in mice nullizygous for PPAR-delta. In contrast to previous reports suggesting that activation of PPAR-delta potentiates colon polyp formation, here we show that PPAR-delta attenuates colon carcinogenesis.
Address Department of Veterinary Science and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. jmp21@psu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1078-8956 ISBN Medium
Area Expedition Conference
Notes PMID:15048110 Approved no
Call Number refbase @ user @ Serial 77
Permanent link to this record
 

 
Author Conradt, L.; Roper, T.J.
Title Group decision-making in animals Type Journal Article
Year 2003 Publication Nature Abbreviated Journal Nature
Volume 421 Issue 6919 Pages 155-158
Keywords (up) Animals; Behavior, Animal/*physiology; *Decision Making; Democracy; Group Processes; *Models, Biological; Population Density; Social Behavior
Abstract Groups of animals often need to make communal decisions, for example about which activities to perform, when to perform them and which direction to travel in; however, little is known about how they do so. Here, we model the fitness consequences of two possible decision-making mechanisms: 'despotism' and 'democracy'. We show that under most conditions, the costs to subordinate group members, and to the group as a whole, are considerably higher for despotic than for democratic decisions. Even when the despot is the most experienced group member, it only pays other members to accept its decision when group size is small and the difference in information is large. Democratic decisions are more beneficial primarily because they tend to produce less extreme decisions, rather than because each individual has an influence on the decision per se. Our model suggests that democracy should be widespread and makes quantitative, testable predictions about group decision-making in non-humans.
Address School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK. l.conradt@sussex.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:12520299 Approved no
Call Number Equine Behaviour @ team @ Serial 5136
Permanent link to this record
 

 
Author Matsuzawa, T.
Title Use of numbers by a chimpanzee Type Journal Article
Year 1985 Publication Nature Abbreviated Journal Nature
Volume 315 Issue 6014 Pages 57-59
Keywords (up) Animals; Behavior, Animal/physiology; Cognition; Female; Mathematics; Pan troglodytes/*physiology
Abstract Recent studies have examined linguistic abilities in apes. However, although human mathematical abilities seem to be derived from the same foundation as those in language, we have little evidence for mathematical abilities in apes (but for exceptions see refs 7-10). In the present study, a 5-yr-old female chimpanzee (Pan troglodytes), 'Ai', was trained to use Arabic numerals to name the number of items in a display. Ai mastered numerical naming from one to six and was able to name the number, colour and object of 300 types of samples. Although no particular sequence of describing samples was required, the chimpanzee favoured two sequences (colour/object/number and object/colour/number). The present study demonstrates that the chimpanzee was able to describe the three attributes of the sample items and spontaneously organized the 'word order'.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:3990808 Approved no
Call Number Equine Behaviour @ team @ Serial 2793
Permanent link to this record
 

 
Author McGonigle, B.
Title Can apes learn to count? Type
Year 1985 Publication Nature Abbreviated Journal Nature
Volume 315 Issue 6014 Pages 16-17
Keywords (up) Animals; Behavior, Animal/physiology; Cognition; Pan troglodytes/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:3990806 Approved no
Call Number Equine Behaviour @ team @ Serial 2794
Permanent link to this record
 

 
Author Buttiker, W.
Title [Preliminary report on eye-frequenting butterflies in the Ivory Coast] Type Journal Article
Year 1973 Publication Revue Suisse de Zoologie; Annales de la Societe Zoologique Suisse et du Museum d'Histoire Naturelle de Geneve Abbreviated Journal Rev Suisse Zool
Volume 80 Issue 1 Pages 1-43
Keywords (up) Animals; Behavior, Animal; Cattle; Cote d'Ivoire; Ecology; Ectoparasitic Infestations/*veterinary; *Eye; Horses; *Insects; *Parasites; Sheep
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language German Summary Language Original Title Vorlaufige Beobachtungen an augenbesuchenden Schmetterlingen in der Elfenbeinkuste
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-418X ISBN Medium
Area Expedition Conference
Notes PMID:4354354 Approved no
Call Number Equine Behaviour @ team @ Serial 2716
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J.
Title Horses damp the spring in their step Type Journal Article
Year 2001 Publication Nature Abbreviated Journal Nature
Volume 414 Issue 6866 Pages 895-899
Keywords (up) Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration
Abstract The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.
Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:11780059 Approved no
Call Number Equine Behaviour @ team @ Serial 2300
Permanent link to this record
 

 
Author de Waal, F.B.; Berger, M.L.
Title Payment for labour in monkeys Type Journal Article
Year 2000 Publication Nature Abbreviated Journal Nature
Volume 404 Issue 6778 Pages 563
Keywords (up) Animals; Cebus/*physiology; *Cooperative Behavior; Evolution; *Feeding Behavior; Female; Male; Reward
Abstract
Address Living Links, Yerkes Regional Primate Research Center, and Department of Psychology, Emory University, Atlanta, Georgia 30329, USA. dewaal@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:10766228 Approved no
Call Number refbase @ user @ Serial 190
Permanent link to this record
 

 
Author Terrace, H.S.
Title Chunking by a pigeon in a serial learning task Type Journal Article
Year 1987 Publication Nature Abbreviated Journal Nature
Volume 325 Issue 7000 Pages 149-151
Keywords (up) Animals; Cognition/*physiology; Columbidae/*physiology; Feedback; Learning/*physiology; Male
Abstract A basic principle of human memory is that lists that can be organized into memorable 'chunks' are easier to remember. Memory span is limited to a roughly constant number of chunks and is to a large extent independent of the amount of informaton contained in each chunk. Depending on the ingenuity of the code used to integrate discrete items into chunks, one can substantially increase the number of items that can be recalled correctly. Newly developed paradigms for studying memory in non-verbal organisms allow comparison of the abilities of human and non-human subjects to memorize lists. Here I present two types of evidence that pigeons 'chunk' 5-element lists whose components (colours and achromatic geometric forms) are clustered into distinct groups. Those lists were learned twice as rapidly as a homogeneous list of colours or heterogeneous lists in which the elements are not clustered. The pigeons were also tested for knowledge of the order of two elements drawn from the 5-element lists. They responded in the correct order only to those subsets that contained a chunk boundary. Thus chunking can be studied profitably in animal subjects; the cognitive processes that allow an organism to form chunks do no presuppose linguistic competence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:3808071 Approved no
Call Number Equine Behaviour @ team @ Serial 2792
Permanent link to this record
 

 
Author Paz-y-Miño C. G.; Bond, A.B.; Kamil, A.C.; Balda, R.P.
Title Pinyon jays use transitive inference to predict social dominance Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume 430 Issue 7001 Pages 778-781
Keywords (up) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology
Abstract Living in large, stable social groups is often considered to favour the evolution of enhanced cognitive abilities, such as recognizing group members, tracking their social status and inferring relationships among them. An individual's place in the social order can be learned through direct interactions with others, but conflicts can be time-consuming and even injurious. Because the number of possible pairwise interactions increases rapidly with group size, members of large social groups will benefit if they can make judgments about relationships on the basis of indirect evidence. Transitive reasoning should therefore be particularly important for social individuals, allowing assessment of relationships from observations of interactions among others. Although a variety of studies have suggested that transitive inference may be used in social settings, the phenomenon has not been demonstrated under controlled conditions in animals. Here we show that highly social pinyon jays (Gymnorhinus cyanocephalus) draw sophisticated inferences about their own dominance status relative to that of strangers that they have observed interacting with known individuals. These results directly demonstrate that animals use transitive inference in social settings and imply that such cognitive capabilities are widespread among social species.
Address Center for Avian Cognition, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15306809 Approved no
Call Number refbase @ user @; Equine Behaviour @ team @ room B 3.029 Serial 352
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Cognitive science: rank inferred by reason Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume 430 Issue 7001 Pages 732-733
Keywords (up) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15306792 Approved no
Call Number refbase @ user @ Serial 365
Permanent link to this record