toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Devinsky, O.; Boesch, J.M.; Cerda-Gonzalez, S.; Coffey, B.; Davis, K.; Friedman, D.; Hainline, B.; Houpt, K.; Lieberman, D.; Perry, P.; Prüss, H.; Samuels, M.A.; Small, G.W.; Volk, H.; Summerfield, A.; Vite, C.; Wisniewski, T.; Natterson-Horowitz, B. doi  openurl
  Title A cross-species approach to disorders affecting brain and behaviour Type Journal Article
  Year 2018 Publication Nature Reviews Neurology Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Structural and functional elements of biological systems are highly conserved across vertebrates. Many neurological and psychiatric conditions affect both humans and animals. A cross-species approach to the study of brain and behaviour can advance our understanding of human disorders via the identification of unrecognized natural models of spontaneous disorders, thus revealing novel factors that increase vulnerability or resilience, and via the assessment of potential therapies. Moreover, diagnostic and therapeutic advances in human neurology and psychiatry can often be adapted for veterinary patients. However, clinical and research collaborations between physicians and veterinarians remain limited, leaving this wealth of comparative information largely untapped. Here, we review pain, cognitive decline syndromes, epilepsy, anxiety and compulsions, autoimmune and infectious encephalitides and mismatch disorders across a range of animal species, looking for novel insights with translational potential. This comparative perspective can help generate novel hypotheses, expand and improve clinical trials and identify natural animal models of disease resistance and vulnerability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-4766 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Devinsky2018 Serial 6420  
Permanent link to this record
 

 
Author Smith, W.J. url  isbn
openurl 
  Title Cognitive Implications of an Information-sharing Model of Animal Communication Type Book Chapter
  Year 1998 Publication Animal Cognition in Nature Abbreviated Journal  
  Volume Issue Pages 227-243  
  Keywords  
  Abstract (up) Summary In social communication, one animal signals and another responds. Several cognitive steps are involved as the second animal selects its responses; these steps can be described as follows in terms of an informational model. First, the responding individual must evaluate the information made available by the signaling on the basis of other information, available from sources contextual to the signal. Second, the respondent must fit all of the relevant information into patterns generated from recall of past events (conscious recall is not generally required; pattern fitting is a fundamental skill). Third, conditional predictions must be made; and fourth, the individual must test and modify any of these predictions for which significant consequences exist. Many vertebrate animals appear to respond to signaling with considerable flexibility. Communicative events are thus complex but are by no means intractable. Indeed, communication provides us with excellent opportunities to investigate animal cognition.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication London Editor Russell P. Balda; Irene M. Pepperberg; Alan C. Kamil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9780120770304 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2914  
Permanent link to this record
 

 
Author Beer, C.G. url  isbn
openurl 
  Title Varying Views of Animal and Human Cognition Type Book Chapter
  Year 1998 Publication Animal Cognition in Nature Abbreviated Journal  
  Volume Issue Pages 435-456  
  Keywords  
  Abstract (up) Summary In this chapter I want to stand back from the splendid empirical work on animal cognitive capacities that is the focus of this book, and look at the broader context of cognitive concerns within which the work can be viewed. Indeed even the term `cognitive ethology' currently connotes and denotes more than is represented here, as other collections of articles, such as and , exemplify. I include the current descendants of behavioristic learning theory, evolutionary epistemology, evolutionary psychology and the recent comparative turn that has been taken in cognitive science. These several approaches, despite their considerable overlap, often appear independent and even ignorant of one another. Like the proverbial blind men feeling the hide of an elephant, they touch hands from time to time, yet collectively have only a piecemeal and distributed understanding of the shape of the whole. Although each approach may indeed need the space to work out its own conceptual and methodological preoccupations without confounding interference from other views, a utopian spirit envisages an ultimate coming together, a more comprehensive realization of the synthetic approach to animal cognition that is this book's theme.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication London Editor Russell P. Balda; Irene M. Pepperberg; Alan C. Kamil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9780120770304 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2915  
Permanent link to this record
 

 
Author Dyer, F.C. url  isbn
openurl 
  Title Spatial Cognition: Lessons from Central-place Foraging Insects Type Book Chapter
  Year 1998 Publication Animal Cognition in Nature Abbreviated Journal  
  Volume Issue Pages 119-154  
  Keywords  
  Abstract (up) Summary Spatial orientation has played an extremely important role in the development of ideas about the behavioral capacities of animals. Indeed, as the modern scientific study of animal behavior emerged from its roots in zoology and experimental psychology, studies of spatial orientation figured in the work of many of the pioneering researchers, including Tinbergen (), von ), Watson () and .  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication London Editor Russell P. Balda; Irene M. Pepperberg; Alan C. Kamil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9780120770304 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2913  
Permanent link to this record
 

 
Author Kamil, A.C. url  doi
isbn  openurl
  Title On the Proper Definition of Cognitive Ethology Type Book Chapter
  Year 1998 Publication Animal Cognition in Nature Abbreviated Journal  
  Volume Issue Pages 1-28  
  Keywords  
  Abstract (up) Summary The last 20-30 years have seen two `scientific revolutions' in the study of animal behavior: the cognitive revolution that originated in psychology, and the Darwinian, behavioral ecology revolution that originated in biology. Among psychologists, the cognitive revolution has had enormous impact. Similarly, among biologists, the Darwinian revolution has had enormous impact. The major theme of this chapter is that these two scientific research programs need to be combined into a single approach, simultaneously cognitive and Darwinian, and that this single approach is most appropriately called cognitive ethology.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication London Editor Russell P. Balda; Irene M. Pepperberg; Alan C. Kamil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9780120770304 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4202  
Permanent link to this record
 

 
Author Arnold, K.; Zuberbuhler, K. doi  openurl
  Title Language evolution: semantic combinations in primate calls Type Journal Article
  Year 2006 Publication Nature Abbreviated Journal Nature  
  Volume 441 Issue 7091 Pages 303  
  Keywords Animal Migration; Animals; Eagles/physiology; *Evolution; Female; Haplorhini/*physiology; Male; Predatory Behavior; *Semantics; *Vocalization, Animal  
  Abstract (up) Syntax sets human language apart from other natural communication systems, although its evolutionary origins are obscure. Here we show that free-ranging putty-nosed monkeys combine two vocalizations into different call sequences that are linked to specific external events, such as the presence of a predator and the imminent movement of the group. Our findings indicate that non-human primates can combine calls into higher-order sequences that have a particular meaning.  
  Address School of Psychology, University of St Andrews, St Andrews KY16 9JP, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16710411 Approved no  
  Call Number refbase @ user @ Serial 354  
Permanent link to this record
 

 
Author Franks, N.R.; Richardson, T. url  doi
openurl 
  Title Teaching in tandem-running ants Type Journal Article
  Year 2006 Publication Nature Abbreviated Journal Nature  
  Volume 439 Issue 7073 Pages 153  
  Keywords *Animal Communication; Animals; Ants/*physiology; Feedback/physiology; Learning/*physiology; *Teaching  
  Abstract (up) The ant Temnothorax albipennis uses a technique known as tandem running to lead another ant from the nest to food--with signals between the two ants controlling both the speed and course of the run. Here we analyse the results of this communication and show that tandem running is an example of teaching, to our knowledge the first in a non-human animal, that involves bidirectional feedback between teacher and pupil. This behaviour indicates that it could be the value of information, rather than the constraint of brain size, that has influenced the evolution of teaching.  
  Address School of Biological Sciences, University of Bristol, Bristol BS8 IUG, UK. nigel.franks@bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16407943 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4651  
Permanent link to this record
 

 
Author Gilmanshin, R.; Callender, R.H.; Dyer, R.B. openurl 
  Title The core of apomyoglobin E-form folds at the diffusion limit Type Journal Article
  Year 1998 Publication Nature Structural Biology Abbreviated Journal Nat Struct Biol  
  Volume 5 Issue 5 Pages 363-365  
  Keywords Animals; Apoproteins/*chemistry; Diffusion; Horses; Myoglobin/*chemistry; *Protein Folding; Spectroscopy, Fourier Transform Infrared; Temperature  
  Abstract (up) The E-form of apomyoglobin has been characterized using infrared and fluorescence spectroscopies, revealing a compact core with native like contacts, most probably consisting of 15-20 residues of the A, G and H helices of apomyoglobin. Fast temperature-jump, time-resolved infrared measurements reveal that the core is formed within 96 micros at 46 degrees C, close to the diffusion limit for loop formation. Remarkably, the folding pathway of the E-form is such that the formation of a limited number of native-like contacts is not rate limiting, or that the contacts form on the same time scale expected for diffusion controlled loop formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1072-8368 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9586997 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3795  
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J. doi  openurl
  Title Horses damp the spring in their step Type Journal Article
  Year 2001 Publication Nature Abbreviated Journal Nature  
  Volume 414 Issue 6866 Pages 895-899  
  Keywords Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration  
  Abstract (up) The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.  
  Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11780059 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2300  
Permanent link to this record
 

 
Author Moon, C.; Baldridge, M.T.; Wallace, M.A.; Burnham, C.-A.D.; Virgin, H.W.; Stappenbeck, T.S. url  doi
openurl 
  Title Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation Type Journal Article
  Year 2015 Publication Nature Abbreviated Journal Nature  
  Volume 521 Issue 7550 Pages 90-93  
  Keywords Phenotype  
  Abstract (up) The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control1-5. In many cases, the microbiota is the presumed culprit of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice6,7. In conventionally raised mice, the microbiome is transmitted from the dam2,8,9. Here we show that microbially–driven dichotomous fecal IgA levels in WT mice within the same facility mimic the effects of chromosomal mutations. We observed in multiple facilities that vertically-transmissible bacteria in IgA-Low mice dominantly lowered fecal IgA levels in IgA-High mice after cohousing or fecal transplantation. In response to injury, IgA-Low mice showed increased damage that was transferable by fecal transplantation and driven by fecal IgA differences. We found that bacteria from IgA-Low mice degraded the secretory component (SC) of SIgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose fecal IgA as one marker of microbial variability and conclude that cohousing and/or fecal transplantation enables analysis of progeny from different dams.  
  Address Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language eng Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6005  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print