toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bernstein, I. S. url  doi
openurl 
  Title Dominance, aggression and reproduction in primate societies Type Journal Article
  Year 1976 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 60 Issue 2 Pages 459-472  
  Keywords  
  Abstract Dominance relationships in primate societies are generally inferred by analyses of agonistic interactions. This aspect of social organization is so striking in macaque and baboon societies that many theoreticians have postulated selective mechanisms operating on the genetic attributes which contribute to high dominance rank. Alpha males were hypothesized to increase their genetic fitness by successfully competing with other males for access to ovulating females. Evidence relevant to these speculations has been mixed. Whereas some investigators found alpha males had near exclusive sexual access to females, others failed to confirm preferential access to ovulating females. Indeed, considerable variability in competition for females existed not only among species, but also among troops of the same species living in different habitats. Further, partner selection was not an exclusive male prerogative; females proved to express active preferences for particular males as sexual partners, and these preferences were not related to high male aggressivity. Alpha males, however, were noted to maintain their positions through social skills as members of a central core or alliance, and high rank was related primarily to seniority. Moreover, alpha males responded actively to challenges to the troop and were judged to contribute significantly to the survival of infants. It was therefore hypothesized that increased genetic fitness related to the increased survival of immature animals in the troop, most of which would already be the offspring of senior (and hence alpha) males. Selection would then be for the social skills leading to successful alliances in troop defense. Such skills might also relate to female partner preferences thus increasing the reproductive effectiveness of alpha males at any point in their careers, including years prior to and following their assumption of alpha rank.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5441  
Permanent link to this record
 

 
Author (up) Broom, M. openurl 
  Title A unified model of dominance hierarchy formation and maintenance Type Journal Article
  Year 2002 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 219 Issue 1 Pages 63-72  
  Keywords Animals; *Behavior, Animal; Feeding Behavior; *Models, Psychological; *Social Dominance; Social Environment  
  Abstract In many different species it is common for animals to spend large portions of their lives in groups. Such groups need to divide available resources amongst the individuals they contain and this is often achieved by means of a dominance hierarchy. Sometimes hierarchies are stable over a long period of time and new individuals slot into pre-determined positions, but there are many situations where this is not so and a hierarchy is formed out of a group of individuals meeting for the first time. There are several different models both of the formation of such dominance hierarchies and of already existing hierarchies. These models often treat the two phases as entirely separate, whereas in reality, if there is a genuine formation phase to the hierarchy, behaviour in this phase will be governed by the rewards available, which in turn depends upon how the hierarchy operates once it has been formed. This paper describes a method of unifying models of these two distinct phases, assuming that the hierarchy formed is stable. In particular a framework is introduced which allows a variety of different models of each of the two parts to be used in conjunction with each other, thus enabling a wide range of situations to be modelled. Some examples are given to show how this works in practice.  
  Address Centre for Statistics and Stochastic Modelling, School of Mathematical Sciences, University of Sussex, Falmer, Brighton, BN1 9QH, U.K. m.broom@sussex.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12392975 Approved no  
  Call Number refbase @ user @ Serial 439  
Permanent link to this record
 

 
Author (up) Broom, M.; Cannings, C. url  doi
openurl 
  Title Modelling Dominance Hierarchy formation as a Multi-player game Type Journal Article
  Year 2002 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 219 Issue 3 Pages 397-413  
  Keywords  
  Abstract Animals who live in groups need to divide available resources amongst themselves. This is often achieved by means of a dominance hierarchy, where dominant individuals obtain a larger share of the resources than subordinate individuals. This paper introduces a model of dominance hierarchy formation using a multi-player extension of the classical Hawk-Dove game. Animals play non-independent pairwise games in a Swiss tournament which pairs opponents against those which have performed equally well in the conflict so far, for a fixed number of rounds. Resources are divided according to the number of contests won. The model, and its emergent properties, are discussed in the context of experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 450  
Permanent link to this record
 

 
Author (up) Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R. url  doi
openurl 
  Title Collective Memory and Spatial Sorting in Animal Groups Type Journal Article
  Year 2002 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 218 Issue 1 Pages 1-11  
  Keywords  
  Abstract We present a self-organizing model of group formation in three-dimensional space, and use it to investigate the spatial dynamics of animal groups such as fish schools and bird flocks. We reveal the existence of major group-level behavioural transitions related to minor changes in individual-level interactions. Further, we present the first evidence for collective memory in such animal groups (where the previous history of group structure influences the collective behaviour exhibited as individual interactions change) during the transition of a group from one type of collective behaviour to another. The model is then used to show how differences among individuals influence group structure, and how individuals employing simple, local rules of thumb, can accurately change their spatial position within a group (e.g. to move to the centre, the front, or the periphery) in the absence of information on their current position within the group as a whole. These results are considered in the context of the evolution and ecological importance of animal groups.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5310  
Permanent link to this record
 

 
Author (up) Dugatkin, L.A.; Hoglund, J. url  doi
openurl 
  Title Delayed breeding and the evolution of mate copying in lekking species Type Journal Article
  Year 1995 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 174 Issue 3 Pages 261-267  
  Keywords  
  Abstract Recent experimental evidence indicates that females may copy the mate choice of others. Here, we present a model for the evolution of mate copying strategies in lekking species. In the model, all females (copiers and non-copiers) assess male quality, but a copier's assessment of a male's quality increases after males have mated with other females. The model demonstrates that mate copying is favored when breeding late in the season has a relatively high cost. We hope that our results will spur empirical work quantifying the time constraints associated with breeding, thus allowing more direct tests of the model's predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 482  
Permanent link to this record
 

 
Author (up) Dugatkin, L.A.; Perlin, M.; Atlas, R. url  doi
openurl 
  Title The Evolution of Group-beneficial Traits in the Absence of Between-group Selection Type Journal Article
  Year 2003 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 220 Issue 1 Pages 67-74  
  Keywords  
  Abstract One specific prediction emerging from trait-group models of natural selection is that when individuals possess traits that benefit other group members, natural selection will favor “cheating” (i.e. not possessing the group-beneficial trait) within groups. Cheating is selected within groups because it allows individuals to avoid bearing the relative costs typically associated with group-beneficial traits, but to still reap the benefits associated with the acts of other group members. Selection between groups favors traits that benefit other group members. The relative strength of within- and between-group selection then determines the equilibrium frequency of those who produce group-beneficial traits and those that do not. Here we demonstrate that individual-level selection, that is selection within groups can also produce an intermediate frequency of such group-beneficial traits by frequency-dependent selection. The models we develop are general in nature, but were inspired by the evolution of antibiotic resistance in bacteria. The theory developed here is distinct from prior work that relies on reciprocity or kinship per'se to achieve cooperation and altruism among group members.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 491  
Permanent link to this record
 

 
Author (up) Fishman, M.A. url  doi
openurl 
  Title Predator Inspection: Closer Approach as a Way to Improve Assessment of Potential Threats Type Journal Article
  Year 1999 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 196 Issue 2 Pages 225-235  
  Keywords  
  Abstract When detecting a predator, some prey animals respond in a counterintuitive fashion by approaching, rather than fleeing, that potential threat of extinction. This seemingly paradoxical behaviour, known aspredator inspection, has been reported for a wide variety of taxa--and therefore can be assumed to be adaptive. However, the view of predator inspection as a paradoxical behaviour rests on two implicit assumptions: (a) initial predator detecting is unambiguous, with no uncertainty in discriminating between hunting and non hunting members of predator species, or members of predator species and unrelated phenomena; (b) the costs of flight are negligible relative to the risk of predation. Upon reflection assumption (a) is not really tenable. Whereas assumption (b) is not consistent with experimental evidence [Godin & Crossman (1994)Behav. Ecol. Sociobiol.34,359-366]. Given that predator detection is ambiguous and the costs of flight are not negligible, a prey individual may benefit by a closer approach to the source of the alarming signals, thus improving its assessment of the situation--despite the increased risk of predation. In this paper, the above statement is given rigor by reformulating the problem in game theoretical terms. The results indicate that a prey will minimize its costs by performing predator inspection whenever its degree of certainty regarding predator identification and/or assessment of its intentions is less than a threshold, which is determined by the model's parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 523  
Permanent link to this record
 

 
Author (up) Gueron, S.; Levin, S.A.; Rubenstein, D.I. url  doi
openurl 
  Title The Dynamics of Herds: From Individuals to Aggregations Type Journal Article
  Year 1996 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 182 Issue 1 Pages 85-98  
  Keywords  
  Abstract The dynamic behavior of small herds is investigated by means of simulations of two-dimensional discrete-stochastic models. An individual-based approach is used to relate collective behavior to individual decisions. In our model, the motion of an individual in a herd is assumed to be the combined result of both density-independent and density-dependent decisions, in the latter case based on the influence of surrounding neighbors; assumed decision rules are hierarchical, balancing short range repulsion against long-range attraction. The probability of fragmentation of the model herd depends on parameter values. We explore the variety and characteristics of spatial patterns that develop during migration, for herds that are homogeneous and heterogeneous regarding intrinsic walking speeds. Group integrity can be maintained even in mixed populations, but fragmentation results for these more easily than for a homogeneous herd. Observations of natural populations suggest that animals move away from individuals that intrude too closely into their environment, but are attracted to individuals at a distance. Between these extremes, there appears to be a neutral zone, within which other individuals engender no response. We explore the importance of this neutral zone, and offer evolutionary interpretations. In particular, the neutral zone, if not too large, permits the individual to remain in contact with the herd, while reducing the frequency with which acceleration or deceleration must be undertaken. This offers obvious energetic benefits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5253  
Permanent link to this record
 

 
Author (up) Hamilton, W.D. doi  openurl
  Title Geometry for the selfish herd Type Journal Article
  Year 1971 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 31 Issue 2 Pages 295-311  
  Keywords Animals; Anura; *Behavior, Animal; Breeding; Communication; Evolution; Fear; Metallurgy; *Models, Biological; Probability; Snakes; *Spatial Behavior  
  Abstract This paper presents an antithesis to the view that gregarious behaviour is evolved through benefits to the population or species. Following Galton (1871) and Williams (1964) gregarious behaviour is considered as a form of cover-seeking in which each animal tries to reduce its chance of being caught by a predator.

It is easy to see how pruning of marginal individuals can maintain centripetal instincts in already gregarious species; some evidence that marginal pruning actually occurs is summarized. Besides this, simply defined models are used to show that even in non-gregarious species selection is likely to favour individuals who stay close to others.

Although not universal or unipotent, cover-seeking is a widespread and important element in animal aggregation, as the literature shows. Neglect of the idea has probably followed from a general disbelief that evolution can be dysgenic for a species. Nevertheless, selection theory provides no support for such disbelief in the case of species with outbreeding or unsubdivided populations.

The model for two dimensions involves a complex problem in geometrical probability which has relevance also in metallurgy and communication science. Some empirical data on this, gathered from random number plots, is presented as of possible heuristic value.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:5104951 Approved no  
  Call Number refbase @ user @ Serial 771  
Permanent link to this record
 

 
Author (up) Hamilton, W.D. doi  openurl
  Title The genetical evolution of social behaviour. I Type Journal Article
  Year 1964 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 7 Issue 1and 2 Pages 1-52  
  Keywords *Behavior; *Genetics; Humans; *Models, Theoretical  
  Abstract A genetical mathematical model is described which allows for interactions between relatives on one another's fitness. Making use of Wright's Coefficient of Relationship as the measure of the proportion of replica genes in a relative, a quantity is found which incorporates the maximizing property of Darwinian fitness. This quantity is named “inclusive fitness”. Species following the model should tend to evolve behaviour such that each organism appears to be attempting to maximize its inclusive fitness. This implies a limited restraint on selfish competitive behaviour and possibility of limited self-sacrifices.

Special cases of the model are used to show (a) that selection in the social situations newly covered tends to be slower than classical selection, (b) how in populations of rather non-dispersive organisms the model may apply to genes affecting dispersion, and (c) how it may apply approximately to competition between relatives, for example, within sibships. Some artificialities of the model are discussed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:5875341 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5160  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print