toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arnold, K.; Zuberbuhler, K. doi  openurl
  Title Language evolution: semantic combinations in primate calls Type Journal Article
  Year 2006 Publication Nature Abbreviated Journal Nature  
  Volume 441 Issue 7091 Pages 303  
  Keywords Animal Migration; Animals; Eagles/physiology; *Evolution; Female; Haplorhini/*physiology; Male; Predatory Behavior; *Semantics; *Vocalization, Animal  
  Abstract Syntax sets human language apart from other natural communication systems, although its evolutionary origins are obscure. Here we show that free-ranging putty-nosed monkeys combine two vocalizations into different call sequences that are linked to specific external events, such as the presence of a predator and the imminent movement of the group. Our findings indicate that non-human primates can combine calls into higher-order sequences that have a particular meaning.  
  Address School of Psychology, University of St Andrews, St Andrews KY16 9JP, UK  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16710411 Approved no  
  Call Number refbase @ user @ Serial 354  
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J. doi  openurl
  Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
  Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 67 Issue 3 Pages 165-176  
  Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology  
  Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.  
  Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16415571 Approved no  
  Call Number refbase @ user @ Serial 358  
Permanent link to this record
 

 
Author Fenton, B.; Ratcliffe, J. doi  openurl
  Title Animal behaviour: eavesdropping on bats Type Journal Article
  Year 2004 Publication Nature Abbreviated Journal Nature  
  Volume 429 Issue 6992 Pages 612-613  
  Keywords Acoustics; Animals; Chiroptera/anatomy & histology/classification/genetics/*physiology; Echolocation/*physiology; *Evolution; Phylogeny; Predatory Behavior/physiology; Species Specificity  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15190335 Approved no  
  Call Number refbase @ user @ Serial 500  
Permanent link to this record
 

 
Author Viscido, S.V.; Miller, M.; Wethey, D.S. openurl 
  Title The dilemma of the selfish herd: the search for a realistic movement rule Type Journal Article
  Year 2002 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 217 Issue 2 Pages 183-194  
  Keywords Animals; *Behavior, Animal; *Mass Behavior; Models, Biological; *Motor Activity; Predatory Behavior  
  Abstract The selfish herd hypothesis predicts that aggregations form because individuals move toward one another to minimize their own predation risk. The “dilemma of the selfish herd” is that movement rules that are easy for individuals to follow, fail to produce true aggregations, while rules that produce aggregations require individual behavior so complex that one may doubt most animals can follow them. If natural selection at the individual level is responsible for herding behavior, a solution to the dilemma must exist. Using computer simulations, we examined four different movement rules. Relative predation risk was different for all four movement rules (p<0.05). We defined three criteria for measuring the quality of a movement rule. A good movement rule should (a) be statistically likely to benefit an individual that follows it, (b) be something we can imagine most animals are capable of following, and (c) result in a centrally compact flock. The local crowded horizon rule, which allowed individuals to take the positions of many flock-mates into account, but decreased the influence of flock-mates with distance, best satisfied these criteria. The local crowded horizon rule was very sensitive to the animal's perceptive ability. Therefore, the animal's ability to detect its neighbors is an important factor in the dynamics of group formation.  
  Address Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA. viscido@u.washington.edu  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12202112 Approved no  
  Call Number refbase @ user @ Serial 554  
Permanent link to this record
 

 
Author Viscido, S.V.; Miller, M.; Wethey, D.S. doi  openurl
  Title The response of a selfish herd to an attack from outside the group perimeter Type Journal Article
  Year 2001 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 208 Issue 3 Pages 315-328  
  Keywords Animals; *Behavior, Animal; *Computer Simulation; Models, Biological; *Movement; Predatory Behavior  
  Abstract According to the selfish herd hypothesis, animals can decrease predation risk by moving toward one another if the predator can appear anywhere and will attack the nearest target. Previous studies have shown that aggregations can form using simple movement rules designed to decrease each animal's Domain of Danger. However, if the predator attacks from outside the group's perimeter, these simple movement rules might not lead to aggregation. To test whether simple selfish movement rules would decrease predation risk for those situations when the predator attacks from outside the flock perimeter, we constructed a computer model that allowed flocks of 75 simulated fiddler crabs to react to one another, and to a predator attacking from 7 m away. We attacked simulated crab flocks with predators of different sizes and attack speeds, and computed relative predation risk after 120 time steps. Final trajectories showed flight toward the center of the flock, but curving away from the predator. Path curvature depended on the predator's size and approach speed. The average crab experienced a greater decrease in predation risk when the predator was small or slow moving. Regardless of the predator's size and speed, however, predation risk always decreased as long as crabs took their flock-mates into account. We conclude that, even when flight away from an external predator occurs, the selfish avoidance of danger can lead to aggregation.  
  Address Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A. viscido@u.washington.edu  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11207093 Approved no  
  Call Number refbase @ user @ Serial 555  
Permanent link to this record
 

 
Author Griffin, A.S. doi  openurl
  Title Social learning in Indian mynahs, Acridotheres tristis: the role of distress calls Type Journal Article
  Year 2008 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 75 Issue 1 Pages 79-89  
  Keywords Acridotheres tristis; distress vocalizations; head saccades; Indian mynah; predator avoidance learning; social learning  
  Abstract Socially acquired predator avoidance is a phenomenon in which individuals acquire an avoidance response towards an initially neutral stimulus after they have experienced it together with the antipredator signals of social companions. Earlier research has established that alarm calls used for intraspecific communication are effective stimuli for triggering acquisition. However, animals produce a large range of other antipredator responses that might engage antipredator learning. Here, I examine the effects of conspecific distress calls, a signal that is produced by birds when restrained by a predator, and that appears to be directed towards predators, rather than conspecifics, on predator avoidance learning in Indian mynahs, Acridotheres tristis. Distress calls reflect high levels of alarm in the caller and should, therefore, mediate robust learning. Experiment 1 revealed that subjects performed higher rates of head movements in response to a previously unfamiliar avian mount after it had been presented simultaneously with playbacks of conspecific distress vocalizations. Experiment 2 revealed that increased rates of head saccades resembled the spontaneous response evoked by a novel stimulus more closely than it resembled the response evoked by a perched raptor, suggesting that distress calls inculcated a visual exploratory response, rather than an antipredator response. While it is usually thought that the level of acquisition in learners follows a simple relationship with the level of alarm shown by demonstrators, the present results suggest that this relationship may be more complex. Antipredator signals with different functions may have differential effects on learners.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4696  
Permanent link to this record
 

 
Author Sovrano, V.A.; Rainoldi, C.; Bisazza, A.; Vallortigara, G. url  openurl
  Title Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish Type Journal Article
  Year 1999 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 106 Issue 1-2 Pages 175-180  
  Keywords Predator fixation; Fish; Left-eye preference  
  Abstract It has recently been reported that predator inspection is more likely to occur when a companion (i.e. the mirror image of the test animal) is visible on the left rather than on the right side of mosquitofish Gambusia holbrooki. This very unexpected outcome could be consistent with the hypothesis of a preferential use of the right eye during sustained fixation of a predator as well as of a preferential use of the left eye during fixation of conspecifics. We measured the time spent in monocular viewing during inspection of their own mirror images in females of six species of fish, belonging to different families--G. holbrooki, Xenotoca eiseni, Phoxinus phoxinus, Pterophyllum scalare, Xenopoecilus sarasinorum, and Trichogaster trichopterus. Results revealed a consistent left-eye preference during sustained fixation in all of the five species. Males of G. holbrooki, which do not normally show any social behaviour, did not exhibit any eye preferences during mirror-image inspection. We found, however, that they could be induced to manifest a left-eye preference, likewise females, if tested soon after capture, when some affiliative tendencies can be observed. These findings add to current evidence in a variety of vertebrate species for preferential involvement of structures located in the right side of the brain in response to the viewing of conspecifics.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 614  
Permanent link to this record
 

 
Author Hirsch, B.T. doi  openurl
  Title Costs and benefits of within-group spatial position: a feeding competition model Type Journal Article
  Year 2007 Publication The Quarterly review of biology Abbreviated Journal Q Rev Biol  
  Volume 82 Issue 1 Pages 9-27  
  Keywords Animals; Competitive Behavior/*physiology; Dominance-Subordination; Feeding Behavior/*physiology/*psychology; Population Dynamics; Predatory Behavior/*physiology  
  Abstract An animal's within-group spatial position has several important fitness consequences. Risk of predation, time spent engaging in antipredatory behavior and feeding competition can all vary with respect to spatial position. Previous research has found evidence that feeding rates are higher at the group edge in many species, but these studies have not represented the entire breadth of dietary diversity and ecological situations faced by many animals. In particular the presence of concentrated, defendable food patches can lead to increased feeding rates by dominants in the center of the group that are able to monopolize or defend these areas. To fully understand the tradeoffs of within-group spatial position in relation to a variety of factors, it is important to be able to predict where individuals should preferably position themselves in relation to feeding rates and food competition. A qualitative model is presented here to predict how food depletion time, abundance of food patches within a group, and the presence of prior knowledge of feeding sites affect the payoffs of different within-group spatial positions for dominant and subordinate animals. In general, when feeding on small abundant food items, individuals at the front edge of the group should have higher foraging success. When feeding on slowly depleted, rare food items, dominants will often have the highest feeding rates in the center of the group. Between these two extreme points of a continuum, an individual's optimal spatial position is predicted to be influenced by an additional combination of factors, such as group size, group spread, satiation rates, and the presence of producer-scrounger tactics.  
  Address Department of Anthropology, Stony Brook University Stony Brook, New York 11794, USA. BTHIRSCH@IC.SUNYSB.EDU  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-5770 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17354992 Approved no  
  Call Number refbase @ user @ Serial 803  
Permanent link to this record
 

 
Author Dugatkin, L.; Alfieri, M. doi  openurl
  Title Tit-For-Tat in guppies (Poecilia reticulata): the relative nature of cooperation and defection during predator inspection Type Journal Article
  Year 1991 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 5 Issue 3 Pages 300-309  
  Keywords Game theory – Tit-For-Tat – predator inspection – guppy  
  Abstract Summary The introduction of game-theoretical thinking into evolutionary biology has laid the groundwork for a heuristic view of animal behaviour in which individuals employ “strategies” – rules that instruct them how to behave in a given circumstance to maximize relative fitness. Axelrod and Hamilton (1981) found that a strategy called Tit-For-Tat (TFT) is one robust cooperative solution to the iterated Prisoner's Dilemma game. There exists, however, little empirical evidence that animals employ TFT. Predator inspection in fish provides one ecological context in which to examine the use of the TFT strategy.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2177  
Permanent link to this record
 

 
Author Watve, M.; Thakar, J.; Kale, A.; Puntambekar, S.; Shaikh, I.; Vaze, K.; Jog, M.; Paranjape, S. doi  openurl
  Title Bee-eaters ( Merops orientalis) respond to what a predator can see Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 4 Pages 253-259  
  Keywords Animals; Birds/*physiology; *Predatory Behavior; *Visual Perception  
  Abstract Two sets of experiments are reported that show that the small green bee-eater ( Merops orientalis, a small tropical bird) can appreciate what a predator can or cannot see. Bee-eaters avoid entering the nest in the presence of a potential nest predator. In the first set of experiments bee-eaters entered the nest more frequently when the predator was unable to see the nest from its position, as compared to an approximately equidistant position from which the nest could be seen. In the second set of experiments bee-eaters entered the nest more frequently when the predator was looking away from the nest. The angle of gaze from the nest was associated significantly positively with the probability of entering the nest whereas the angle from the bird was not. Birds showed considerable flexibility as well as individual variation in the possible methods of judging the predator's position and direction of gaze.  
  Address Life Research Foundation, 10, Pranav, 1000/6C Navi Peth, Pune 411030, India. watve@vsnl.com  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12461603 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2587  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print