toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Byrne, R.W.; Bates, L.A. url  doi
openurl 
  Title Why are animals cognitive? Type Journal Article
  Year 2006 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 16 Issue 12 Pages (down) R445-8  
  Keywords Animals; Arachnida/physiology; *Association Learning; *Behavior, Animal; *Cognition; Cooperative Behavior; Falconiformes/physiology; Pan troglodytes/physiology; Parrots/physiology; Passeriformes/physiology  
  Abstract  
  Address Centre for Social Learning and Cognitive Evolution, and Scottish Primate Research Group, School of Psychology, University of St Andrews, Fife KY16 9JP, Scotland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16781995 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4708  
Permanent link to this record
 

 
Author Hare, B.; Tomasello, M. doi  openurl
  Title Human-like social skills in dogs? Type Journal Article
  Year 2005 Publication Trends in Cognitive Sciences Abbreviated Journal Trends. Cognit. Sci.  
  Volume 9 Issue 9 Pages (down) 439-444  
  Keywords *Animal Communication; Animals; *Behavior, Animal; Cognition/*physiology; Dogs; *Evolution; Humans; *Social Behavior  
  Abstract Domestic dogs are unusually skilled at reading human social and communicative behavior--even more so than our nearest primate relatives. For example, they use human social and communicative behavior (e.g. a pointing gesture) to find hidden food, and they know what the human can and cannot see in various situations. Recent comparisons between canid species suggest that these unusual social skills have a heritable component and initially evolved during domestication as a result of selection on systems mediating fear and aggression towards humans. Differences in chimpanzee and human temperament suggest that a similar process may have been an important catalyst leading to the evolution of unusual social skills in our own species. The study of convergent evolution provides an exciting opportunity to gain further insights into the evolutionary processes leading to human-like forms of cooperation and communication.  
  Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany. hare@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-6613 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16061417 Approved no  
  Call Number refbase @ user @ Serial 546  
Permanent link to this record
 

 
Author Krueger, K.; Heinze, J. url  doi
openurl 
  Title Horse sense: social status of horses (Equus caballus) affects their likelihood of copying other horses` behavior Type Journal Article
  Year 2008 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 11 Issue 3 Pages (down) 431-439  
  Keywords copying, horse, social cognition, sociality  
  Abstract Animals that live in stable social groups need to gather information on their own relative position in the group`s social hierarchy, either by directly threatening or challenging others, or in a less costly manner, by observing interactions among others. Such indirect inference of dominance relationships has previously been reported from primates, rats, and birds and fish. Here, we show that domestic horses, Equus caballus, are similarly capable of social cognition. Taking advantage of a specific “following behavior” that horses show towards humans in a riding arena, we investigated whether bystander horses adjust their response to an experimenter according to the observed interaction and their own dominance relationship with the horse whose reaction to the experimenter they had observed before. Horses copied the following behavior towards an experimenter after watching a dominant horse following, but did not follow after observing a subordinate horse or a horse from another social group doing so. The following behavior which horses show towards an experimenter therefore appears to be affected by the demonstrator`s behavior and social status relative to the observer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4324  
Permanent link to this record
 

 
Author Grosenick, L.; Clement, T.S.; Fernald, R.D. doi  openurl
  Title Fish can infer social rank by observation alone Type Journal Article
  Year 2007 Publication Nature Abbreviated Journal Nature  
  Volume 445 Issue 7126 Pages (down) 429-432  
  Keywords Aggression/physiology; Animals; Cognition/*physiology; Female; Fishes/*physiology; Learning/*physiology; Male; Models, Biological; *Social Dominance; Territoriality  
  Abstract Transitive inference (TI) involves using known relationships to deduce unknown ones (for example, using A > B and B > C to infer A > C), and is thus essential to logical reasoning. First described as a developmental milestone in children, TI has since been reported in nonhuman primates, rats and birds. Still, how animals acquire and represent transitive relationships and why such abilities might have evolved remain open problems. Here we show that male fish (Astatotilapia burtoni) can successfully make inferences on a hierarchy implied by pairwise fights between rival males. These fish learned the implied hierarchy vicariously (as 'bystanders'), by watching fights between rivals arranged around them in separate tank units. Our findings show that fish use TI when trained on socially relevant stimuli, and that they can make such inferences by using indirect information alone. Further, these bystanders seem to have both spatial and featural representations related to rival abilities, which they can use to make correct inferences depending on what kind of information is available to them. Beyond extending TI to fish and experimentally demonstrating indirect TI learning in animals, these results indicate that a universal mechanism underlying TI is unlikely. Rather, animals probably use multiple domain-specific representations adapted to different social and ecological pressures that they encounter during the course of their natural lives.  
  Address Department of Biological Sciences, Stanford University, Stanford, California, 94305, USA. logang@stanford.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17251980 Approved no  
  Call Number refbase @ user @ Serial 600  
Permanent link to this record
 

 
Author Scheibe, K.M.; Gromann, C. openurl 
  Title Application testing of a new three-dimensional acceleration measuring system with wireless data transfer (WAS) for behavior analysis Type
  Year 2006 Publication Behavior research methods Abbreviated Journal Behav Res Methods  
  Volume 38 Issue 3 Pages (down) 427-433  
  Keywords Acceleration; Animals; *Behavior, Animal; Cattle; Cattle Diseases/*diagnosis; Computer Communication Networks/*instrumentation; Forelimb/physiopathology; Fractals; Hindlimb/physiopathology; Horse Diseases/*diagnosis; Horses; Imaging, Three-Dimensional/instrumentation/methods/veterinary; Lameness, Animal/*diagnosis; Monitoring, Ambulatory/instrumentation/*methods; Motor Activity; Movement; Pattern Recognition, Automated/methods  
  Abstract A wireless acceleration measurement system was applied to free-moving cows and horses. Sensors were available as a collar and a flat box for measuring leg or trunk movements. Results were transmitted simultaneously by radio or stored in an 8-MB internal memory. As analytical procedures, frequency distributions with standard deviations, spectral analyses, and fractal analyses were applied. Bymeans of the collar sensor, basic behavior patterns (standing, grazing, walking, ruminating, drinking, and hay uptake) could be identified in cows. Lameness could be detected in cows and horses by means of the leg sensor. The portion of basic and harmonic spectral components was reduced; the fractal dimension was reduced. The system can be used for the detection and analysis of even small movements of free-moving humans or animals over several hours. It is convenient for the analysis of basic behaviors, emotional reactions, or events causing flight or fright or for comparing different housing elements, such as floors or fences.  
  Address Institute for Zoo and Wildlife Research, Berlin, Germany. kscheibe@izw-berlin.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1554-351X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17186752 Approved no  
  Call Number Serial 1775  
Permanent link to this record
 

 
Author Kelly, D.M.; Spetch, M.L. openurl 
  Title Pigeons encode relative geometry Type Journal Article
  Year 2001 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 27 Issue 4 Pages (down) 417-422  
  Keywords Animals; Behavior, Animal/physiology; Cognition/*physiology; Columbidae; Discrimination Learning/physiology; Form Perception/*physiology; Space Perception/*physiology  
  Abstract Pigeons were trained to search for hidden food in a rectangular environment designed to eliminate any external cues. Following training, the authors administered unreinforced test trials in which the geometric properties of the apparatus were manipulated. During tests that preserved the relative geometry but altered the absolute geometry of the environment, the pigeons continued to choose the geometrically correct corners, indicating that they encoded the relative geometry of the enclosure. When tested in a square enclosure, which distorted both the absolute and relative geometry, the pigeons randomly chose among the 4 corners, indicating that their choices were not based on cues external to the apparatus. This study provides new insight into how metric properties of an environment are encoded by pigeons.  
  Address Department of Psychology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9. kelly@bio.psy.ruhr-uni-bochum.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11676090 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2770  
Permanent link to this record
 

 
Author Subiaul, F.; Cantlon, J.F.; Holloway, R.L.; Terrace, H.S. doi  openurl
  Title Cognitive imitation in rhesus macaques Type Journal Article
  Year 2004 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 305 Issue 5682 Pages (down) 407-410  
  Keywords Animals; *Cognition; *Imitative Behavior; *Learning; Macaca mulatta/*physiology/psychology; Male  
  Abstract Experiments on imitation typically evaluate a student's ability to copy some feature of an expert's motor behavior. Here, we describe a type of observational learning in which a student copies a cognitive rule rather than a specific motor action. Two rhesus macaques were trained to respond, in a prescribed order, to different sets of photographs that were displayed on a touch-sensitive monitor. Because the position of the photographs varied randomly from trial to trial, sequences could not be learned by motor imitation. Both monkeys learned new sequences more rapidly after observing an expert execute those sequences than when they had to learn new sequences entirely by trial and error.  
  Address Department of Anthropology, Columbia University, New York, NY 10027, USA. subiaul@aol.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15256673 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2839  
Permanent link to this record
 

 
Author Overli, O.; Sorensen, C.; Pulman, K.G.T.; Pottinger, T.G.; Korzan, W.; Summers, C.H.; Nilsson, G.E. doi  openurl
  Title Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates Type Journal Article
  Year 2007 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 31 Issue 3 Pages (down) 396-412  
  Keywords Adaptation, Psychological/*physiology; Animals; Behavior, Animal/*physiology; Biogenic Monoamines/physiology; Brain/physiology; Cognition/*physiology; Evolution; Glucocorticoids/*physiology; Individuality; Lizards; Oncorhynchus mykiss; Social Dominance; Stress, Psychological/*psychology  
  Abstract Reactions to stress vary between individuals, and physiological and behavioral responses tend to be associated in distinct suites of correlated traits, often termed stress-coping styles. In mammals, individuals exhibiting divergent stress-coping styles also appear to exhibit intrinsic differences in cognitive processing. A connection between physiology, behavior, and cognition was also recently demonstrated in strains of rainbow trout (Oncorhynchus mykiss) selected for consistently high or low cortisol responses to stress. The low-responsive (LR) strain display longer retention of a conditioned response, and tend to show proactive behaviors such as enhanced aggression, social dominance, and rapid resumption of feed intake after stress. Differences in brain monoamine neurochemistry have also been reported in these lines. In comparative studies, experiments with the lizard Anolis carolinensis reveal connections between monoaminergic activity in limbic structures, proactive behavior in novel environments, and the establishment of social status via agonistic behavior. Together these observations suggest that within-species diversity of physiological, behavioral and cognitive correlates of stress responsiveness is maintained by natural selection throughout the vertebrate sub-phylum.  
  Address Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway. oyvind.overli@umb.no  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17182101 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2801  
Permanent link to this record
 

 
Author Friedrich, A.M.; Clement, T.S.; Zentall, T.R. doi  openurl
  Title Functional equivalence in pigeons involving a four-member class Type Journal Article
  Year 2004 Publication Behavioural processes Abbreviated Journal Behav. Process.  
  Volume 67 Issue 3 Pages (down) 395-403  
  Keywords Animals; *Association Learning; *Behavior, Animal; *Cognition; Columbidae; *Concept Formation  
  Abstract Research suggests that animals are capable of forming functional equivalence relations or stimulus classes of the kind usually demonstrated by humans (e.g., the class defined by an object and the word for that object). In pigeons, such functional equivalences are typically established using many-to-one matching-to-sample in which two samples are associated with one comparison stimulus and two different samples are associated with the other. Evidence for the establishment of functional equivalences between samples associated with the same comparison comes from transfer tests. In Experiment 1, we found that pigeons can form a single class consisting of four members (many-to-one matching) when the alternative class has only one member (one-to-one matching). In Experiment 2, we ruled out the possibility that the pigeons acquired the hybrid one-to-one/many-to-one task by developing a single-code/default coding strategy as earlier research suggested that it might. Thus, pigeons can develop a functional class consisting of as many as four members, with the alternative class consisting of a single member.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15518989 Approved no  
  Call Number refbase @ user @ Serial 228  
Permanent link to this record
 

 
Author Matsushima, T.; Izawa, E.-I.; Aoki, N.; Yanagihara, S. openurl 
  Title The mind through chick eyes: memory, cognition and anticipation Type Journal Article
  Year 2003 Publication Zoological Science Abbreviated Journal Zoolog Sci  
  Volume 20 Issue 4 Pages (down) 395-408  
  Keywords Animals; Birds/anatomy & histology/*physiology; Brain/anatomy & histology/cytology/physiology; Cognition/*physiology; Memory/*physiology; Perception/physiology  
  Abstract To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as “naive curiosity,” “contra-freeloading,” “Concorde fallacy,” and “altruism.”  
  Address Graduate School of Bioagricultural Sciences, Nagoya University, Japan. matusima@agr.nagoya-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0289-0003 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12719641 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print