toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bystrom, A.; Roepstorff, L.; Johnston, C. openurl 
  Title Effects of draw reins on limb kinematics Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 452-456  
  Keywords Animals; Biomechanics; Exercise Test; Forelimb/physiology; Head/physiology; Hindlimb/physiology; Horses/*physiology; Humans; Movement/physiology; Neck/physiology; Physical Conditioning, Animal/*methods/*physiology; Weight-Bearing/physiology  
  Abstract REASONS FOR PERFORMING STUDY: No data exist on the GRF-kinematics relation due to changes caused by equestrian interventions. HYPOTHESIS: Through the judicious use of draw reins the rider can influence the kinematics of the horse to meet stated goals of dressage training. Relating the results to previously published kinetic data of the same experiment implies a possible relationship between kinetics and kinematics. METHODS: The kinematics of 8 sound Swedish Warmblood horses were measured whilst the horses were being ridden with and without draw reins. Three conditions were evaluated: 1) draw reins only (DR), 2) combination of draw reins and normal reins (NR+DR) and 3) normal reins only (NR). RESULTS: Head and neck angles were significantly decreased by the draw rein but 4-5 times more so for DR when with NR+DR. The forelimb position at hoof lift-off was significantly more caudal with DR. In the hind limb the hip joint extended more quickly and the hock joint flexed more with NR+DR than with NR. Compared to DR the hip joint angular pattern was not significantly different, but the pelvis was more horizontal. CONCLUSION: Riding with a draw rein can have significant influence on the kinematics of the horse. Some of the observed changes can be coupled to changes in kinetics. The hock joint angle seems to be a fairly reliable indicator of load on the hind limb and the angle of femur appears important for hind limb propulsion, when considered in conjunction with the orientation of the pelvis. POTENTIAL RELEVANCE: These findings are important for riders and trainers, as kinematic changes are what trainers observe. It is thereby important to ascertain which kinematic changes are consistently coupled to changes in kinetics in order for trainers to be able to judge correctly the success of intended goals. Further studies are warranted to validate and confirm suggested relationships between kinetics and kinematics.  
  Address Department of Equine Studies, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402465 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3701  
Permanent link to this record
 

 
Author Davies, H.M.S. openurl 
  Title The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse Type Journal Article
  Year 2005 Publication Australian Veterinary Journal Abbreviated Journal Aust Vet J  
  Volume 83 Issue 3 Pages 157-162  
  Keywords Animals; Exercise Test/veterinary; Female; Gait/*physiology; Horses/*physiology; Metacarpus/*physiology; Motor Activity/physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/physiology  
  Abstract OBJECTIVE: To confirm that the midshaft dorsal cortex of the third metacarpal bone experienced higher compressive strains during fast exercise than the medial or lateral cortices, and that the strain peak occurred earlier in the hoof-down phase of the stride on the dorsal cortex than the medial or lateral cortices. DESIGN: Observations of a single horse. PROCEDURE: Strains were collected from a single, sound, 3-year-old Thoroughbred mare during treadmill exercise from rosette strain gauges implanted onto the medial, lateral and dorsal surfaces of the midshaft of the right cannon bone, simultaneously with data from a hoof switch that showed when the hoof was in the stance phase. RESULTS: Peak compressive strains on the dorsal surface of the third metacarpal bone were proportional to exercise speed and occurred at about 30% of stance. Peak compressive strains on the medial surface of the non-lead limb reached a maximum at a speed around 10 m/s and occurred at mid-stance. Peak compressive strains on the lateral surface varied in timing and size between strides at all exercise speeds, but remained less than -2000 microstrains. CONCLUSIONS: The timing of peak compressive strains on the dorsal cortex suggests a relationship to deceleration of the limb following hoof impact, so the main determinants of their size would be exercise speed and turning (as shown in previous experiments). This experiment confirms data from other laboratories that were published but not discussed, that peak compressive strains on the medial surface occur at mid-stance. This suggests that they are related to the support of body weight. The strains on the lateral cortex occurred at variable times so may be associated with the maintenance of balance as well as the support of body weight. Understanding the loading of the third metacarpal bone will help to determine causes of damage to it and ways in which the bone might be conditioned to prevent such damage.  
  Address Department of Veterinary Science, University of Melbourne, Parkville, Victoria 3010. h.davies@unimelb.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0005-0423 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15825628 Approved no  
  Call Number Serial 1891  
Permanent link to this record
 

 
Author Licka, T.; Kapaun, M.; Peham, C. openurl 
  Title Influence of rider on lameness in trotting horses Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 734-736  
  Keywords Animals; Biomechanics; Body Weight; Exercise Test/veterinary; Female; Forelimb/physiopathology; Gait/*physiology; Head Movements/*physiology; Hindlimb/physiopathology; Horse Diseases/diagnosis/*physiopathology; Horses; Humans; Lameness, Animal/diagnosis/*physiopathology; Male; Stress, Mechanical; Weight-Bearing/physiology  
  Abstract REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.  
  Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656506 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3715  
Permanent link to this record
 

 
Author Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C. openurl 
  Title Forelimb tendon loading during jump landings and the influence of fence height Type Journal Article
  Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 33 Pages 6-10  
  Keywords Animals; Biomechanics; Forelimb/injuries/physiology; Horses/injuries/*physiology; Lameness, Animal/etiology; Ligaments, Articular/*physiology; Locomotion/*physiology; Physical Conditioning, Animal; Tendon Injuries/complications/physiopathology/veterinary; Tendons/*physiology; Weight-Bearing/physiology  
  Abstract Lameness in athletic horses is often caused by forelimb tendon injuries, especially in the interosseus tendon (TI) and superficial digital flexor tendon (SDF), but also in the accessory ligament (AL) of the deep digital flexor tendon (DDF). In an attempt to explain the aetiology of these injuries, the present study investigated the loading of the tendons during landing after a jump. In jumping horses, the highest forces can be expected in the trailing limb during landing. Therefore, landing kinematics and ground reaction forces of the trailing forelimb were measured from 6 horses jumping single fences with low to medium heights of 0.80, 1.00 and 1.20 m. The tendon forces were calculated using inverse dynamics and an in vitro model of the lower forelimb. Calculated peak forces in the TI, SDF and DDF + AL during landing were 15.8, 13.9 and 11.7 kN respectively. The relative loading of the tendons (landing forces compared with failure forces determined in a separate study) increased from DDF to TI to SDF and was very high in SDF. This explains the low injury incidence of the DDF and the high injury incidence of the SDF. Fence height substantially influenced SDF forces, whereas it hardly influenced TI forces and did not influence AL strain. Reduction of fence height might therefore limit the risks for SDF injuries, but not for TI and AL injuries.  
  Address Department of Veterinary Anatomy and Physiology, Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11721571 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3786  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print