toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Palme, R. doi  openurl
  Title Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals Type Journal Article
  Year 2012 Publication Animal Welfare Abbreviated Journal  
  Volume 21 Issue 3 Pages 331-337  
  Keywords animal welfare, corticosterone, cortisol, faeces, farm animals, stress  
  Abstract A multitude of endocrine mechanisms are involved in coping with challenges. Glucocorticoids, secreted by the adrenal glands, are in the front line of the battle to overcome stressful situations. They are usually measured in plasma samples as parameters of adrenal activity and thus of disturbance. Unfortunately, collecting blood samples itself can disturb an animal. Thus, non-invasive methods for the determination of glucocorticoids or their metabolites have become increasingly popular. The pros and cons of various non-invasive sample materials (saliva, excreta, milk, hair/feathers and eggs) for glucocorticoid determination are given. Above all, faecal samples offer the

advantage that they can be collected easily. In faecal samples, circulating hormone levels are integrated over a certain period of time and represent the cumulative secretion of hormones. Thus, the levels are less affected by short fluctuations or the pulse-like nature of hormone secretion. However, using this technique to assess an animal’s adrenocortical activity is not especially simple. Whether frequent sampling is necessary or single samples will suffice depends upon the study’s aim (whether one is examining the impact of acute or chronic stressors). Background knowledge of the metabolism and excretion of cortisol/corticosterone metabolites is required and a careful validation for each species and sex investigated is obligatory. The present review also addresses analytical issues regarding sample storage, extraction procedures and immunoassays and includes a comprehensive list of published studies (up to 2011) describing the use of such methods in farmed animals. Applied properly, non-invasive techniques to monitor glucocorticoid metabolites in faecal samples of various species are a useful tool for welfare assessment, especially as they are easily applied at farm or group level.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-7286 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5793  
Permanent link to this record
 

 
Author Krueger, K.; Schwarz, S.; Marr, I.; Farmer, K. doi  openurl
  Title Laterality in Horse Training: Psychological and Physical Balance and Coordination and Strength Rather Than Straightness Type Magazine Article
  Year 2022 Publication Animals Abbreviated Journal Animals  
  Volume 12 Issue 8 Pages 1042  
  Keywords balance; body asymmetry; equitation; horse; motor laterality; sensory laterality; stress; welfare  
  Abstract For centuries, a goal of training in many equestrian disciplines has been to straighten the horse, which is considered a key element in achieving its responsiveness and suppleness. However, laterality is a naturally occurring phenomenon in horses and encompasses body asymmetry, motor laterality and sensory laterality. Furthermore, forcibly counterbalancing motor laterality has been considered a cause of psychological imbalance in humans. Perhaps asymmetry and laterality should rather be accepted, with a focus on training psychological and physical balance, coordination and equal strength on both sides instead of enforcing “straightness”. To explore this, we conducted a review of the literature on the function and causes of motor and sensory laterality in horses, especially in horses when trained on the ground or under a rider. The literature reveals that body asymmetry is innate but does not prevent the horse from performing at a high level under a rider. Motor laterality is equally distributed in feral horses, while in domestic horses, age, breed, training and carrying a rider may cause left leg preferences. Most horses initially observe novel persons and potentially threatening objects or situations with their left sensory organs. Pronounced preferences for the use of left sensory organs or limbs indicate that the horse is experiencing increased emotionality or stress, and long-term insufficiencies in welfare, housing or training may result in left shifts in motor and sensory laterality and pessimistic mentalities. Therefore, increasing laterality can be regarded as an indicator for insufficiencies in housing, handling and training. We propose that laterality be recognized as a welfare indicator and that straightening the horse should be achieved by conducting training focused on balance, coordination and equal strength on both sides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Animals  
  Series Volume 12 Series Issue 8 Edition  
  ISSN 2076-2615 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6670  
Permanent link to this record
 

 
Author Krueger, K.; Esch, L.; Farmer, K.; Marr, I. doi  openurl
  Title Basic Needs in Horses?--A Literature Review Type Magazine Article
  Year 2021 Publication Animals Abbreviated Journal Animals  
  Volume 11 Issue 6 Pages 1798  
  Keywords abnormal behaviour; active responses; horse; movement; passive responses; roughage; stress; social contact  
  Abstract Every animal species has particular environmental requirements that are essential for its welfare, and when these so-called “basic needs” are not fulfilled, the animals suffer. The basic needs of horses have been claimed to be social contact, social companionship, free movement and access to roughage. To assess whether horses suffer when one or more of the four proposed basic needs are restricted, we examined several studies (n = 38) that reported behavioural and physiological reactions to these restrictions. We assigned the studies according to the four types of responses investigated: (a) Stress, (b) Active, (c) Passive, and (d) Abnormal Behaviour. Furthermore, the number of studies indicating that horses reacted to the restrictions were compared with the number of studies reporting no reaction. The limited number of studies available on single management restrictions did not allow conclusions to be drawn on the effect of each restriction separately, especially in the case of social companionship. However, when combinations of social contact, free movement and access to roughage were restricted, many of the horses had developed responses consistent with suffering. Passive Responses, indicating acute suffering, and Abnormal Behaviour, indicating suffering currently or at some time in the past, were especially clearly demonstrated. This provides further evidence of the usefulness of assessing behavioural parameters in combination with physiological measurements when evaluating horse welfare. This meta-analysis of the literature confirms that it is justified to claim that social contact, free movement and access to roughage are basic needs in horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Animals  
  Series Volume 11 Series Issue 6 Edition  
  ISSN 2076-2615 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6645  
Permanent link to this record
 

 
Author Marr, I.; Stefanski, V.; Krueger, K doi  openurl
  Title Lateralität – ein Indikator für das Tierwohl?[Laterality – an animal welfare indicator?] Type Journal Article
  Year 2022 Publication Der Praktische Tierarzt Abbreviated Journal  
  Volume 103 Issue 12/2022 Pages 1246-12757  
  Keywords Sensorische Lateralität – motorische Lateralität – stress – cognitive bias  
  Abstract Ein gutes Tierwohl definiert sich nicht nur durch die Abwesenheit von Stressindikatoren, sondern auch durch das Vorhandensein von Indikatoren, die auf ein gutes Wohlergehen hinweisen. So können stressbedingte Erkrankungen vermieden werden. Zur Bestimmung des Tierwohls bei Pferden wurde daher untersucht, inwieweit sich die sensorische Lateralität (einseitiger Gebrauch von Sinnesorganen) und die motorische Lateralität (einseitiger Gebrauch von Gliedmaßen) als einfach, schnell und kostengünstig zu erhebende Parameter eignen. Hierzu werden neben aktueller Literatur auch die eigenen Untersuchungsergebnisse zusammenfassend dargestellt. Die nach außen sichtbar werdende sensorische und motorische Lateralität sind das Resultat der cerebralen Lateralisierung. Dies beinhaltet nicht nur die Aufgabenteilung beider Gehirnhälften für ein effizienteres Aufnehmen und Speichern von Informationen, sondern sie steht auch in Verbindung mit der Entstehung und Verarbeitung von Emotionen, die maßgeblich am Wohlergehen eines Lebewesens beteiligt sind. Kurzzeitige Stressoren führen zu einer Erregung, die je nach Erfahrungen mit positiven oder negativen Emotionen in Verbindung steht. Emotionen helfen dem Organismus dabei, zu überleben. Andauernde negative Emotionen durch regelmäßige oder anhaltende negative Ereignisse führen zu Stress und reduzieren die Erwartung positiver Ereignisse (negativer cognitive Bias). Das Tier ist im Wohlergehen beeinträchtigt. Jüngst zeigte insbesondere die Messung der motorischen Lateralität Potenzial als Indikator für lang anhaltenden und chronischen Stress, denn gestresste Pferde, deren Stresshormonlevel stark ansteigt, zeigen einen zunehmenden Gebrauch der linken Gliedmaßen über einen längeren Zeitraum. Weiterhin zeigen erste Messungen einen Zusammenhang zwischen einer linksseitigen motorischen Lateralität und einer reduzierten Erwartung positiver Ereignisse (negativer cognitive Bias). Zusammen mit der sensorischen Lateralität, die in einer akuten Stressphase ebenso eine Linksverschiebung zeigt und somit als Indikator für Kurzzeitstress gilt, kann eine generelle, vermehrte Linksseitigkeit auch einen Hinweis auf erhöhte Emotionalität und Stressanfälligkeit sein. Eine sich steigernde Linksseitigkeit bedeutet eine präferierte Informationsverarbeitung durch die rechte Gehirnhälfte, die beispielsweise reaktives Verhalten, starke Emotionen und Stressantworten steuert. Es stellte sich jedoch heraus, dass wie bei allen Stressindikatoren auch in der Lateralitätsmessung ein Vergleichswert aus einer vorangegangenen Messung notwendig ist, denn nur Veränderungen zum häufiger werdenden Gebrauch der linken Seite können auf Stress bei Pferden hindeuten und die parallele Erhebung weiterer Parameter, wie zum Beispiel das Verhalten oder Stresshormone, können die Aussage der Lateralität bekräftigen.  
  Address  
  Corporate Author Thesis  
  Publisher Schlütersche Fachmedien GmbH Place of Publication Hannover Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-681X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6692  
Permanent link to this record
 

 
Author Dalmau, A.; Ferret, A.; Chacon, G.; Manteca, X. doi  openurl
  Title Seasonal Changes in Fecal Cortisol Metabolites in Pyrenean Chamois Type Journal Article
  Year 2007 Publication Journal of Wildlife Management Abbreviated Journal J Wildl Manag  
  Volume 71 Issue 1 Pages 190-194  
  Keywords Cadí-Moixeró, Nature Reserve, chamois, cortisol metabolites, feces, hunting reserve, Pyrenees, Rupicapra pyrenaica pyrenaica, seasonal rhythm, stress  
  Abstract We studied seasonal changes in fecal cortisol metabolites (FCM), which have been widely used as indicators of stress, in a population of Pyrenean chamois (Rupicapra pyrenaica pyrenaica) in the Cadí Range of northeastern Spain. We collected fecal samples from 2001 to 2003 in 3 particular locations with different altitudes and male or female presence, and we analyzed them for FCM and fecal nitrogen as an indicator of diet quality. We observed a clear seasonal pattern, with the highest FCM in winter, and we obtained correlations between FCM and monthly mean minimum temperatures and fecal nitrogen. We observed no effects of tourism presence, trophy hunting, or rut season on FCM. Analysis of cortisol metabolites in feces can be a good measure of winter stress in Pyrenean chamois.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4254  
Permanent link to this record
 

 
Author Keay, J.M.; Singh, J.; Gaunt, M.C.; Kaur, T. doi  openurl
  Title Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review Type Journal Article
  Year 2006 Publication Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians Abbreviated Journal J Zoo Wildl Med  
  Volume 37 Issue 3 Pages 234-244  
  Keywords Animals; *Animals, Wild/metabolism; Chromatography, High Pressure Liquid/methods/veterinary; Circadian Rhythm; Conservation of Natural Resources; *Ecosystem; Feces/*chemistry; Glucocorticoids/*analysis/metabolism; Humans; Seasons; Species Specificity; Specimen Handling/methods/veterinary; Stress, Psychological/*metabolism  
  Abstract Conservation medicine is a discipline in which researchers and conservationists study and respond to the dynamic interplay between animals, humans, and the environment. From a wildlife perspective, animal species are encountering stressors from numerous sources. With the rapidly increasing human population, a corresponding increased demand for food, fuel, and shelter; habitat destruction; and increased competition for natural resources, the health and well-being of wild animal populations is increasingly at risk of disease and endangerment. Scientific data are needed to measure the impact that human encroachment is having on wildlife. Nonbiased biometric data provide a means to measure the amount of stress being imposed on animals from humans, the environment, and other animals. The stress response in animals functions via glucocorticoid metabolism and is regulated by the hypothalamic-pituitary-adrenal axis. Fecal glucocorticoids, in particular, may be an extremely useful biometric test, since sample collection is noninvasive to subjects and, therefore, does not introduce other variables that may alter assay results. For this reason, many researchers and conservationists have begun to use fecal glucocorticoids as a means to measure stress in various animal species. This review article summarizes the literature on many studies in which fecal glucocorticoids and their metabolites have been used to assess stress levels in various mammalian species. Variations between studies are the main focus of this review. Collection methods, storage conditions, shipping procedures, and laboratory techniques utilized by different researchers are discussed.  
  Address Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 0442 Duck Pond Drive, Blacksburg, Virginia 24061, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1042-7260 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17319120 Approved no  
  Call Number refbase @ user @ Serial 616  
Permanent link to this record
 

 
Author Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Mostl, E. doi  openurl
  Title Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1040 Issue Pages 162-171  
  Keywords Adrenal Glands/chemistry/metabolism; Animals; Birds; Catecholamines/analysis/chemistry/*metabolism; Feces/*chemistry; Glucocorticoids/analysis/chemistry/*metabolism; Hormones/analysis/metabolism; Mammals; Species Specificity; Stress/*metabolism  
  Abstract A multitude of endocrine mechanisms are involved in coping with challenges. Front-line hormones to overcome stressful situations are glucocorticoids (GCs) and catecholamines (CAs). These hormones are usually determined in plasma samples as parameters of adrenal activity and thus of disturbance. GCs (and CAs) are extensively metabolized and excreted afterwards. Therefore, the concentration of GCs (or their metabolites) can be measured in various body fluids or excreta. Above all, fecal samples offer the advantages of easy collection and a feedback-free sampling procedure. However, large differences exist among species regarding the route and time course of excretion, as well as the types of metabolites formed. Based on information gained from radiometabolism studies (reviewed in this paper), we recently developed and successfully validated different enzyme immunoassays that enable the noninvasive measurement of groups of cortisol or corticosterone metabolites in animal feces. The determination of these metabolites in fecal samples can be used as a powerful tool to monitor GC production in various species of domestic, wildlife, and laboratory animals.  
  Address Institute of Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, Vienna, Austria. rupert.palme@vu-wien.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15891021 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4083  
Permanent link to this record
 

 
Author Zebisch, A.; May, A.; Reese, S.; Gehlen, H. doi  openurl
  Title Effect of different head-neck positions on physical and psychological stress parameters in the ridden horse Type Journal Article
  Year 2013 Publication Journal of Animal Physiology and Animal Nutrition Abbreviated Journal J Anim Physiol Anim Nutr  
  Volume 98 Issue 5 Pages 901-907  
  Keywords hyperflexion; head-neck position; stress; training; animal welfare  
  Abstract Summary Different head?neck positions (HNPs) are used in equestrian sports and are regarded as desirable for training and competition by riders, judges and trainers. Even though some studies have been indicative of hyperflexion having negative effects on horses, this unnatural position is frequently used. In the present study, the influence of different HNPs on physical and psychological stress parameters in the ridden horse was investigated. Heart rate (HR), heart rate variability (HRV) and blood cortisol levels were measured in 18 horses. Low frequency (LF) and high frequency (HF) are power components in the frequency domain measurement of HRV which show the activity of the sympathetic and parasympathetic nervous system. Values were recorded at rest, while riding with a working HNP and while riding with hyperflexion of the horse's head, neck and poll. In addition, rideability and behaviour during the different investigation stages were evaluated by the rider and by an observer. Neither the HR nor the HRV showed a significant difference between working HNP (HR = 105 ± 22/min; LF/HF = 3.89 ± 5.68; LF = 37.28 ± 10.77%) and hyperflexion (HR = 110 ± 18; LF/HF = 1.94 ± 2.21; LF = 38.39 ± 13.01%). Blood cortisol levels revealed a significant increase comparing working HNP (158 ± 60 nm) and hyperflexion (176 ± 64 nm, p = 0.01). The evaluation of rider and observer resulted in clear changes of rideability and behavioural changes for the worse in all parameters collected between a working HNP and hyperflexion. In conclusion, changes of the cortisol blood level as a physical parameter led to the assumption that hyperflexion of head, neck and poll effects a stress reaction in the horse, and observation of the behaviour illustrates adverse effects on the well-being of horses during hyperflexion.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley/Blackwell (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-2439 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/jpn.12155 Approved no  
  Call Number Equine Behaviour @ team @ Serial 6427  
Permanent link to this record
 

 
Author Bosch, O.J.; Nair, H.P.; Ahern, T.H.; Neumann, I.D.; Young, L.J. doi  openurl
  Title The CRF System Mediates Increased Passive Stress-Coping Behavior Following the Loss of a Bonded Partner in a Monogamous Rodent Type Journal Article
  Year 2008 Publication Abbreviated Journal Neuropsychopharmacology  
  Volume 34 Issue 6 Pages 1406-1415  
  Keywords prairie vole; passive stress-coping; forced swim test; tail suspension test; elevated plus-maze; hypothalamo–pituitary–adrenal axis  
  Abstract Social relationships significantly influence physiology and behavior, including the hypothalamo–pituitary–adrenal axis, anxiety, and mental

health. Disruption of social bonds through separation or death often results in profound grieving, depression, and physical illness. As the

monogamous prairie vole forms enduring, selective pair bonds with the mating partner, they provide an animal model to study the

physiological consequences of pair bonding and, thus, the loss of the bonded partner. Male prairie voles were paired with a novel female

or male sibling. After 5 days, half of the males of each group were separated from the partner. Elevated plus-maze, forced swim, and tail

suspension tests were used to assess anxiety-like and passive stress-coping behaviors indicative of depressive-like behavior. Following 4

days of separation from the female but not the male partner, experimental males displayed increased passive stress-coping. This effect

was abolished by long-term intracerebroventricular infusion of a nonselective corticotropin-releasing factor (CRF) receptor antagonist

without disrupting the bond itself. Both CRF type 1 and 2 receptors were involved in the emergence of passive stress-coping behavior.

Furthermore, pairing with a female was associated with elevated CRF mRNA in the bed nucleus of the stria terminalis, and partner loss

elicited a pronounced increase in circulating corticosteroid and adrenal weight. We speculate that the CRF system may mediate an

aversive affect following separation from the female partner, which may facilitate proximity seeking between the pair-bonded individuals.

Hence, the prairie vole model may provide insights into brain mechanisms involved in the psychopathological consequences of partner

loss.
 
  Address  
  Corporate Author Thesis  
  Publisher American College of Neuropsychopharmacology Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0893-133x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5731  
Permanent link to this record
 

 
Author Schultheiss, O.C.; Riebel, K.; Jones, N.M. doi  openurl
  Title Activity inhibition: A predictor of lateralized brain function during stress? Type Journal Article
  Year 2009 Publication Neuropsychology Abbreviated Journal  
  Volume 23 Issue 3 Pages 392-404  
  Keywords activity inhibition; laterality; stress; content analysis; self-regulation; mood states; affective stimuli; perceptual laterality; motor laterality  
  Abstract The authors tested the hypothesis that activity inhibition (AI), a measure of the frequency of the word “not” in written material, marks a propensity to engage functions of the right hemisphere (RH) and disengage functions of the left hemisphere (LH), particularly during stress. Study 1 and Study 2 showed that high AI predicts faster detection of stimuli presented to the RH, relative to the LH. Study 2 provided evidence that the AI-laterality effect is specific to perceptual, but not motor, laterality and that it is particularly strong in individuals with low mood, but absent in individuals in a positive mood state. Study 3 showed that negative affective stimuli prime the AI-laterality effect more strongly than positive affective stimuli. Findings from Study 4 suggest that situationally induced frustration (losing a contest), in conjunction with high AI, leads to increased attentional laterality. The present findings substantially bolster the construct validity of AI and contribute to a better understanding of earlier findings linking AI to physiological stress responses, immune system functioning, alcohol abuse, and nonverbal behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  
  Address Schultheiss, Oliver C.: Institute of Psychology, Friedrich-Alexander University, Kochstrasse 4, Erlangen, Germany, 91054, oliver.schultheiss@psy.phil.uni-erlangen.de  
  Corporate Author Thesis  
  Publisher US: American Psychological Association Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-1559 (Electronic); 0894-4105 (Print) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ 2009-05986-011 Serial 5382  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print