toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Abbruzzetti, S.; Viappiani, C.; Sinibaldi, F.; Santucci, R. openurl 
  Title Kinetics of histidine dissociation from the heme Fe(III) in N-fragment (residues 1-56) of cytochrome c Type Journal Article
  Year 2004 Publication The Protein Journal Abbreviated Journal Protein J  
  Volume (down) 23 Issue 8 Pages 519-527  
  Keywords Animals; Cytochromes c/*chemistry; Enzyme Activation; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; Lasers; Ligands; Peptide Mapping; Photolysis; Spectrophotometry  
  Abstract We have here investigated the dissociation kinetics of the His side chains axially ligated to the heme-iron in the ferric (1-56 residues) N-fragment of horse cyt c. The ligand deligation induced by acidic pH-jump occurs as a biexponential process with different pre-exponential factors, consistent with a structural heterogeneity in solution and the presence of two differently coordinated species. In analogy with GuHCl-denatured cyt c, our data indicate the presence in solution of two ferric forms of the N-fragment characterized by bis-His coordination, as summarized in the following scheme: His18-Fe(III)-His26 <==> His18-Fe(III)-His33. We have found that the pre-exponential factors depend on the extent of the pH-jump. This may be correlated with the different pKa values shown by His26 and His33; due to steric factors, His26 binds to the heme-Fe(III) less strongly than His33, as recently shown by studies on denatured cyt c. Interestingly, the two lifetimes are affected by temperature but not by the extent of the pH-jump. The lower pKa for the deligation reaction required the use of an improved laser pH-jump setup, capable of inducing changes in H+ concentration as large as 1 mM after the end of the laser pulse. For the ferric N-fragment, close activation entropy values have been determined for the two histidines coordinated to the iron; this result significantly differs from that for GuHCl-denatured cyt c, where largely different values of activation entropy were calculated. This underlines the role played by the missing segment (residues 57-104) peptide chain in discriminating deligation of the “nonnative” His from the sixth coordination position of the metal.  
  Address Dipartimento di Fisica, Universita degli Studi di Parma, Parco Area delle Scienze 7/A 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-3887 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15648974 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3770  
Permanent link to this record
 

 
Author Chiba, K.; Ikai, A.; Kawamura-Konishi, Y.; Kihara, H. doi  openurl
  Title Kinetic study on myoglobin refolding monitored by five optical probe stopped-flow methods Type Journal Article
  Year 1994 Publication Proteins Abbreviated Journal Proteins  
  Volume (down) 19 Issue 2 Pages 110-119  
  Keywords Animals; Chromatography, Gel; Circular Dichroism; Horses; Kinetics; Metmyoglobin/analogs & derivatives/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Ultraviolet; Urea  
  Abstract The refolding kinetics of horse cyanometmyoglobin induced by concentration jump of urea was investigated by five optical probe stopped-flow methods: absorption at 422 nm, tryptophyl fluorescence at around 340 nm, circular dichroism (CD) at 222 nm, CD at 260 nm, and CD at 422 nm. In the refolding process, we detected three phases with rate constants of > 1 x 10(2) s-1, (4.5-9.3) s-1, and (2-5) x 10(-3) s-1. In the fastest phase, a substantial amount of secondary structure (approximately 40%) is formed within the dead time of the CD stopped-flow apparatus (10.7 ms). The kinetic intermediate populated in the fastest phase is shown to capture a hemindicyanide, suggesting that a “heme pocket precursor” recognized by hemindicyanide must be constructed within the dead time. In the middle phase, most of secondary and tertiary structures, especially around the captured hemindicyanide, have been constructed. In the slowest phase, we detected a minor structural rearrangement accompanying the ligand-exchange reaction in the fifth coordination of ferric iron. We present a possible model for the refolding process of myoglobin in the presence of the heme group.  
  Address Laboratory of Biodynamics, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0887-3585 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8090705 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3799  
Permanent link to this record
 

 
Author Dunn, M.F.; Branlant, G. openurl 
  Title Roles of zinc ion and reduced coenzyme in horse liver alcohol dehydrogenase catalysis. The mechanism of aldehyde activation Type Journal Article
  Year 1975 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume (down) 14 Issue 14 Pages 3176-3182  
  Keywords *Alcohol Oxidoreductases/metabolism; Aldehydes/*pharmacology; Animals; Binding Sites; Enzyme Activation/drug effects; Horses; Hydrogen-Ion Concentration; Kinetics; Liver/enzymology; *NAD/analogs & derivatives/pharmacology; Oxidation-Reduction; Protein Binding; Spectrophotometry; Spectrophotometry, Ultraviolet; Temperature; *Zinc/pharmacology  
  Abstract 1,4,5,6-Tetrahydronicotinamide adenine dinucleotide (H2NADH) has been investigated as a reduced coenzyme analog in the reaction between trans-4-N,N-dimethylaminocinnamaldehyde (I) (lambdamax 398 nm, epsilonmax 3.15 X 10-4 M-minus 1 cm-minus 1) and the horse liver alcohol dehydrogenase-NADH complex. These equilibrium binding and temperature-jump kinetic studies establish the following. (i) Substitution of H2NADH for NADH limits reaction to the reversible formation of a new chromophoric species, lambdamax 468 nm, epsilonmax 5.8 x 10-4 M-minus 1 cm-minus 1. This chromophore is demonstrated to be structurally analogous to the transient intermediate formed during the reaction of I with the enzyme-NADH complex [Dunn, M. F., and Hutchison, J. S. (1973), Biochemistry 12, 4882]. (ii) The process of intermediate formation with the enzyme-NADH complex is independent of pH over the range 6.13-10.54. Although studies were limited to the pH range 5.98-8.72, a similar pH independence appears to hold for the H2NADH system. (iii) Within the ternary complex, I is bound within van der Waal's contact distance of the coenzyme nicotinamide ring. (iv) Formation of the transient intermediate does not involve covalent modification of coenzyme. Based on these findings, we conclude that zinc ion has a Lewis acid function in facilitating the chemical activation of the aldehyde carbonyl for reduction, and that reduced coenzyme plays a noncovalent effector role in this substrate activating step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:238585 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print