|   | 
Details
   web
Records
Author Gibbs, S.E.B.; Lea, S.E.G.; Jacobs, L.F.
Title Flexible use of spatial cues in the southern flying squirrel (Glaucomys volans) Type Journal Article
Year 2007 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 203-209
Keywords Animals; Male; Orientation; *Sciuridae; *Space Perception; *Spatial Behavior
Abstract Insects, birds, and mammals have been shown capable of encoding spatial information in memory using multiple strategies or frames of reference simultaneously. These strategies include orientation to a goal-specific cue or beacon, to the position of the goal in an array of local landmarks, or to its position in the array of distant landmarks, also known as the global frame of reference. From previous experiments, it appears that birds and mammals that scatter hoard rely primarily on a global frame of reference, but this generalization depends on evidence from only a few species. Here we examined spatial memory in a previously unstudied scatter hoarder, the southern flying squirrel. We dissociated the relative weighting of three potential spatial strategies (beacon, global, or relative array strategy) with three probe tests: transposition of beacon and the rotation or the expansion of the array. The squirrels' choices were consistent with a spatial averaging strategy, where they chose the location dictated by at least two of the three strategies, rather than using a single preferred frame of reference. This adaptive and flexible heuristic has not been previously described in animal orientation studies, yet it may be a common solution to the universal problem of encoding and recalling spatial locations in an ephemeral physical landscape.
Address Department of Psychology, University of California, Berkeley, CA 94720-1650, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17265151 Approved no
Call Number Equine Behaviour @ team @ Serial 2422
Permanent link to this record
 

 
Author Fiset, S.; Leblanc, V.
Title Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior Type Journal Article
Year 2007 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 211-224
Keywords Animals; Dogs/*physiology; Female; Male; *Space Perception; *Spatial Behavior; *Visual Perception
Abstract Recently, (Collier-Baker E, Davis JM, Suddendorf T (2004) J Comp Psychol 118:421-433) suggested that domestic dogs do not understand invisible displacements. In the present study, we further investigated the hypothesis that the search behavior of domestic dogs in invisible displacements is guided by various visual cues inherent to the task rather than by mental representation of an object's past trajectory. Specifically, we examined the role of the experimenter as a function of the final position of the displacement device in the search behavior of domestic dogs. Visible and invisible displacement problems were administered to dogs (N = 11) under two conditions. In the Visible-experimenter condition, the experimenter was visible whereas in the Concealed-experimenter condition, the experimenter was visibly occluded behind a large rigid barrier. Our data supported the conclusion that dogs do not understand invisible displacements but primarily search as a function of the final position of the displacement device and, to a lesser extent, the position of the experimenter.
Address Secteur Sciences Humaines, Universite de Moncton, Campus d'Edmundston, Edmundston, New-Brunswick, E3V 2S8, Canada. sfiset@umce.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17165041 Approved no
Call Number Equine Behaviour @ team @ Serial 2430
Permanent link to this record
 

 
Author Chiesa, A.D.; Pecchia, T.; Tommasi, L.; Vallortigara, G.
Title Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 281-293
Keywords Animals; Association Learning/*physiology; Chickens; *Cues; Dominance, Cerebral/*physiology; *Environment; Exploratory Behavior/*physiology; Logic; Space Perception/*physiology; Spatial Behavior/physiology
Abstract A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, via S. Anastasio 12, 34100, Trieste, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16941155 Approved no
Call Number Equine Behaviour @ team @ Serial 2443
Permanent link to this record
 

 
Author Wallace, D.G.; Hamilton, D.A.; Whishaw, I.Q.
Title Movement characteristics support a role for dead reckoning in organizing exploratory behavior Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 3 Pages 219-228
Keywords Animals; *Association Learning; *Exploratory Behavior; Female; *Motor Activity; *Orientation; Problem Solving; Rats; Rats, Long-Evans; Space Perception; *Spatial Behavior
Abstract Rat exploration is an organized series of trips. Each exploratory trip involves an outward tour from the refuge followed by a return to the refuge. A tour consists of a sequence of progressions with variable direction and speed concatenated by stops, whereas the return consists of a single direct progression. We have argued that processing self-movement information generated on the tour allows a rat to plot the return to the refuge. This claim has been supported by observing consistent differences between tour and return segments independent of ambient cue availability; however, this distinction was based on differences in movement characteristics derived from multiple progressions and stops on the tour and the single progression on the return. The present study examines movement characteristics of the tour and return progressions under novel-dark and light conditions. Three novel characteristics of progressions were identified: (1) linear speeds and path curvature of exploratory trips are negatively correlated, (2) tour progression maximum linear speed and temporal pacing varies as a function of travel distance, and (3) return progression movement characteristics are qualitatively different from tour progressions of comparable length. These observations support a role for dead reckoning in organizing exploratory behavior.
Address Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892, USA. dwallace@niu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16767471 Approved no
Call Number Equine Behaviour @ team @ Serial 2463
Permanent link to this record
 

 
Author Sturz, B.R.; Bodily, K.D.; Katz, J.S.
Title Evidence against integration of spatial maps in humans Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 3 Pages 207-217
Keywords Adult; *Association Learning; Computer Graphics; Humans; Male; *Orientation; *Problem Solving; Reference Values; *Space Perception; *Spatial Behavior; User-Computer Interface
Abstract A dynamic 3-D virtual environment was constructed for humans as an open-field analogue of Blaisdell and Cook's (2005) pigeon foraging task to determine if humans, like pigeons, were capable of integrating separate spatial maps. Participants used keyboard keys and a mouse to search for a hidden goal in a 4x4 grid of raised cups. During Phase 1 training, a goal was consistently located between two landmarks (Map 1: blue T and red L). During Phase 2 training, a goal was consistently located down and left of a single landmark (Map 2: blue T). Transfer trials were then conducted in which participants were required to make choices in the presence of the red L alone. Cup choices during transfer assessed participants' strategies: association (from Map 1), generalization (from Map 2), or integration (combining Map 1 and 2). During transfer, cup choices increased to a location which suggested an integration strategy and was consistent with results obtained with pigeons. However, additional analyses of the human data suggested participants initially used a generalization strategy followed by a progressive shift in search behavior away from the red L. This shift in search behavior during transfer was responsible for the changes in cup choices across transfer trials and was confirmed by a control condition. These new analyses offer an alternative explanation to the spatial integration account proposed for pigeons.
Address Department of Psychology, Auburn University, Auburn, AL 36849, USA. sturzbr@auburn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16767470 Approved no
Call Number Equine Behaviour @ team @ Serial 2464
Permanent link to this record
 

 
Author Henderson, J.; Hurly, T.A.; Healy, S.D.
Title Spatial relational learning in rufous hummingbirds (Selasphorus rufus) Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 3 Pages 201-205
Keywords Animals; *Association Learning; *Birds; *Concept Formation; Flowers; Form Perception; Male; *Orientation; Reward; Size Perception; *Space Perception; Spatial Behavior
Abstract There is increasing evidence that animals can learn abstract spatial relationships, and successfully transfer this knowledge to novel situations. In this study, rufous hummingbirds (Selasphorus rufus) were trained to feed from either the lower or the higher of two flowers. When presented with a test pair of flowers, one of which was at a novel height, they chose the flower in the appropriate spatial position rather than the flower at the correct height. This response may also have been influenced by a preference for taller flowers as acquisition of the task during experimental training occurred more readily when the reward flower was the taller of the pair. Thus, it appears that although learning abstract relationships may be a general phenomenon across contexts, and perhaps across species, the ease with which they are learned and the context in which they are subsequently used may not be the same.
Address Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16767469 Approved no
Call Number Equine Behaviour @ team @ Serial 2465
Permanent link to this record
 

 
Author Church, D.L.; Plowright, C.M.S.
Title Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 2 Pages 131-140
Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Bees/*physiology; Chi-Square Distribution; *Cues; Female; Memory/physiology; Reward; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract We presented bumblebees a spatial memory task similar to that used with other species (e.g., cats, dogs, and pigeons). In some conditions we allowed for presence of scent marks in addition to placing local and global spatial cues in conflict. Bumblebees (Bombus impatiens) were presented an array of artificial flowers within a flight cage, one flower offering reward (S+), while the others were empty (S-). Bees were tested with empty flowers. In Experiment 1, flowers were either moved at the time of testing or not. Bees returned to the flower in the same absolute position of the S+ (the flower-array-independent (FAI) position), even if it was in the wrong position relative to the S- and even when new flower covers prevented the use of possible scent marks. New flower covers (i.e., without possible scent marks) had the effect of lowering the frequency of probing behavior. In Experiment 2, the colony was moved between training and testing. Again, bees chose the flower in the FAI position of the S+, and not the flower that would be chosen using strictly memory for a flight vector. Together, these experiments show that to locate the S+ bees did not rely on scent marks nor the positions of the S-, though the S- were prominent objects close to the goal. Also, bees selected environmental features to remember the position of the S+ instead of relying upon a purely egocentric point of view. Similarities with honeybees and vertebrates are discussed, as well as possible encoding mechanisms.
Address Psychology Department, Bag Service #45444, University of New Brunswick, Fredericton, NB, E3B 6E4, Canada. dchurchl@unb.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16416106 Approved no
Call Number Equine Behaviour @ team @ Serial 2474
Permanent link to this record
 

 
Author Cheng, K.; Wignall, A.E.
Title Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 2 Pages 141-150
Keywords Animals; Bees/*physiology; Choice Behavior/physiology; *Cues; Memory/*physiology; Perceptual Masking/physiology; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.
Address Centre for the Integrative Study of Animal Behaviour and Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia. ken@galliform.bhs.mq.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16374626 Approved no
Call Number Equine Behaviour @ team @ Serial 2477
Permanent link to this record
 

 
Author Collier-Baker, E.; Davis, J.M.; Nielsen, M.; Suddendorf, T.
Title Do chimpanzees (Pan troglodytes) understand single invisible displacement? Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages 55-61
Keywords Animals; Behavior, Animal; *Cognition; Male; Pan troglodytes/*psychology; *Space Perception; *Spatial Behavior; Task Performance and Analysis; *Visual Perception
Abstract Previous research suggests that chimpanzees understand single invisible displacement. However, this Piagetian task may be solvable through the use of simple search strategies rather than through mentally representing the past trajectory of an object. Four control conditions were thus administered to two chimpanzees in order to separate associative search strategies from performance based on mental representation. Strategies involving experimenter cue-use, search at the last or first box visited by the displacement device, and search at boxes adjacent to the displacement device were systematically controlled for. Chimpanzees showed no indications of utilizing these simple strategies, suggesting that their capacity to mentally represent single invisible displacements is comparable to that of 18-24-month-old children.
Address Early Cognitive Development Unit, School of Psychology, University of Queensland, Brisbane, Queensland 4072, Australia. e.collier-baker@psy.uq.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16163481 Approved no
Call Number Equine Behaviour @ team @ Serial 2482
Permanent link to this record
 

 
Author Vlasak, A.N.
Title Global and local spatial landmarks: their role during foraging by Columbian ground squirrels (Spermophilus columbianus) Type Journal Article
Year 2006 Publication (up) Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages 71-80
Keywords Animals; Cues; Feeding Behavior/*psychology; Female; *Memory; Mental Recall; Orientation; Sciuridae/*psychology; *Space Perception; *Spatial Behavior
Abstract Locating food and refuge is essential for an animal's survival. However, little is known how mammals navigate under natural conditions and cope with given environmental constraints. In a series of six experiments, I investigated landmark-based navigation in free-ranging Columbian ground squirrels (Spermophilus columbianus). Squirrels were trained individually to find a baited platform within an array of nine identical platforms and artificial landmarks set up on their territories. After animals learned the location of the food platform in the array, the position of the latter with respect to local artificial, local natural, and global landmarks was manipulated, and the animal's ability to find the food platform was tested. When only positions of local artificial landmarks were changed, squirrels located food with high accuracy. When the location of the array relative to global landmarks was altered, food-finding accuracy decreased but remained significant. In the absence of known global landmarks, the presence of a familiar route and natural local landmarks resulted in significant but not highly accurate performance. Squirrels likely relied on multiple types of cues when orienting towards a food platform. Local landmarks were used only as a secondary mechanism of navigation, and were not attended to when a familiar route and known global landmarks were present. This study provided insights into landmark use by a wild mammal in a natural situation, and it demonstrated that an array of platforms can be employed to investigate landmark-based navigation under such conditions.
Address Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA. avlasak@sas.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16163480 Approved no
Call Number Equine Behaviour @ team @ Serial 2483
Permanent link to this record