|   | 
Details
   web
Records
Author (up) Musterle, B.; Furst, A.; Geyer, H.; Raber, M.; Weishaupt, M.A.
Title [Interactive educational DVD on hoof protection, horseshoeing and diseases of the hoof] Type Journal Article
Year 2006 Publication Schweizer Archiv fur Tierheilkunde Abbreviated Journal Schweiz Arch Tierheilkd
Volume 148 Issue 2 Pages 81-85
Keywords Animals; *Education, Veterinary/methods; Foot Diseases/pathology/therapy/*veterinary; Hoof and Claw/anatomy & histology/*physiology; Horse Diseases/*pathology/therapy; Horses/anatomy & histology/*physiology; Humans; Shoes; Videodisc Recording
Abstract Good cooperation between farrier, veterinarian and horse owner is an important prerequisite for optimal support of the horse with regards to shoeing and hoof health. The introduction of a joint educational aid aims to improve the level of education of both veterinarians and farriers. The interactive, multimedia approach represents an innovative new dimension in instruction techniques, predominantly provided through images and videos. The contents of the new teaching aid will focus on detailed anatomy of the foot and distal limb, as well as currently accepted shoeing practices and techniques and pathologic conditions of the hoof and foot.
Address Pferdeklinik der Universitat Zurich
Corporate Author Thesis
Publisher Place of Publication Editor
Language German Summary Language Original Title Interaktives Lehrmittel Huf: Schutz, Beschlag und Erkrankungen
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-7281 ISBN Medium
Area Expedition Conference
Notes PMID:16509169 Approved no
Call Number Equine Behaviour @ team @ Serial 4033
Permanent link to this record
 

 
Author (up) Ratzlaff, M.H.; Wilson, P.D.; Hyde, M.L.; Balch, O.K.; Grant, B.D.
Title Relationship between locomotor forces, hoof position and joint motion during the support phase of the stride of galloping horses Type Journal Article
Year 1993 Publication Acta Anatomica Abbreviated Journal Acta Anat (Basel)
Volume 146 Issue 2-3 Pages 200-204
Keywords Animals; Equipment Design; Hoof and Claw/*physiology; Horses/*physiology; Joints/*physiology; *Locomotion; Motor Activity/*physiology; Physiology/instrumentation; *Posture; Shoes; Transducers
Abstract Three methods were used simultaneously to determine the relationships between the vertical forces exerted on the hooves and the positions of the limbs and hooves at the times of peak vertical forces from 2 horses galloping on a track straightaway. Vertical forces were recorded from an instrumented shoe, fetlock joint motion was measured with an electrogoniometer and the angles of the carpus, fetlock and hoof were determined from slow-motion films. At hoof contact, the mean angles of the carpus and fetlock were 181-182 degrees and 199-206 degrees, respectively. Peak vertical forces on the heel occurred at or near maximum extension of the carpal and fetlock joints. Peak forces on the toe occurred during flexion of the fetlock joint and at mean hoof angles of 28-31 degrees from the horizontal. The mean angles of the hoof from the horizontal at the time of heel contact were 6-7 degrees. Hoof lift occurred at mean carpal angles of 173-174 degrees and mean fetlock angles of 199-200 degrees.
Address Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman 99164-6520
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-5180 ISBN Medium
Area Expedition Conference
Notes PMID:8470468 Approved no
Call Number refbase @ user @ Serial 1945
Permanent link to this record
 

 
Author (up) Rollot, Y.; Lecuyer, E.; Chateau, H.; Crevier-Denoix, N.
Title Development of a 3D model of the equine distal forelimb and of a GRF shoe for noninvasive determination of in vivo tendon and ligament loads and strains Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 677-682
Keywords Animals; Biomechanics; Floors and Floorcoverings; Forelimb/*physiology/ultrasonography; Gait/physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/methods/*veterinary; Ligaments, Articular/*physiology; Locomotion/*physiology; Models, Biological; Shoes; Tendons/*physiology; Toe Joint/physiology/ultrasonography
Abstract REASONS FOR PERFORMING STUDY: As critical locomotion events (e.g. high-speed and impacts during racing, jump landing) may contribute to tendinopathies, in vivo recording of gaits kinematic and dynamic parameters is essential for 3D reconstruction and analysis. OBJECTIVE: To propose a 3D model of the forelimb and a ground reaction force recording shoe (GRF-S) for noninvasively quantifying tendon and ligament loads and strains. METHODS: Bony segments trajectories of forelimbs placed under a power press were recorded using triads of ultrasonic kinematic markers linked to the bones. Compression cycles (from 500-6000 N) were applied for different hoof orientations. Locations of tendon and ligament insertions were recorded with regard to the triads. The GRF-S recorded GRF over the hoof wall and used four 3-axis force sensors sandwiched between a support shoe and the shoe to be tested. RESULTS: Validation of the model by comparing calculated and measured superficial digital flexor tendon strains, and evaluation of the role of proximal interphalangeal joint in straight sesamoidean ligament and oblique sesamoidean ligament strains, were successfully achieved. Objective comparisons of the 3 components of GRF over the hoof for soft and hard grounds could be recorded, where the s.d. of GRF norm was more important on hard ground at walk and trot. CONCLUSIONS: Soft grounds (sand and rubber) dissipate energy by lowering GRF amplitude and diminish bounces and vibrations at impact. At comparable speed, stance phase was longer on soft sand ground. POTENTIAL RELEVANCE: The conjugate use of the GRF-S and the numerical model would help to quantify and analyse ground/shoe combination on comfort, propulsion efficiency or lameness recovery.
Address UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, 7, Avenue du General de Gaulle, 94704 Maisons-Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656495 Approved no
Call Number Equine Behaviour @ team @ Serial 3769
Permanent link to this record
 

 
Author (up) Schaer, B.L.D.; Ryan, C.T.; Boston, R.C.; Nunamaker, D.M.
Title The horse-racetrack interface: a preliminary study on the effect of shoeing on impact trauma using a novel wireless data acquisition system Type Journal Article
Year 2006 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 38 Issue 7 Pages 664-670
Keywords Animals; Equipment and Supplies/veterinary; Forelimb/injuries/physiology; Hindlimb/injuries/physiology; Hoof and Claw/*physiology; Horses/*injuries/*physiology; Locomotion/physiology; Muscle, Skeletal/injuries/*physiology; *Musculoskeletal Physiology; Musculoskeletal System/*injuries; Physical Conditioning, Animal/*physiology; Risk Factors; Running/physiology; Shoes
Abstract REASONS FOR PERFORMING STUDY: There is a need to determine accelerations acting on the equine hoof under field conditions in order to better assess the risks for orthopaedic health associated with shoeing practices and/or surface conditions. OBJECTIVES: To measure the acceleration profiles generated in Thoroughbred racehorses exercising at high speeds over dirt racetracks and specifically to evaluate the effect of a toe grab shoe compared to a flat racing plate, using a newly developed wireless data acquisition system (WDAS). METHODS: Four Thoroughbred racehorses in training and racing were used. Based on previous trials, each horse served as its own control for speed trials, with shoe type as variable. Horses were evaluated at speeds ranging from 12.0-17.3 m/sec. Impact accelerations, acceleration on break over and take-off, and temporal stride parameters were calculated. Impact injury scores were also determined, using peak accelerations and the time over which they occurred. RESULTS: Recorded accelerations for the resultant vector (all horses all speeds) calculated from triaxial accelerometers ranged 96.3-251.1 g, depending on the phase of the impact event. An association was observed between shoe type and change in acceleration in individual horses, with 2 horses having increased g on initial impact with toe grab shoes in place. In the final impact phase, one horse had an increase of 110 g while wearing toe grab shoes. Increased accelerations were also observed on break over in 2 horses while wearing toe grab shoes. CONCLUSIONS: Shoe type may change impact accelerations significantly in an individual horse and could represent increased risk for injury. Further work is needed to determine if trends exist across a population. POTENTIAL RELEVANCE: The WDAS could be used for performance evaluation in individual horses to evaluate any component of the horse-performance surface interface, with the goal of minimising risk and optimising performance.
Address Richard S. Reynolds Jr. Comparative Orthopedic Research Laboratory, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania 19348, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:17228583 Approved no
Call Number Equine Behaviour @ team @ Serial 4024
Permanent link to this record