|   | 
Details
   web
Records
Author (up) Gibbs, S.E.B.; Lea, S.E.G.; Jacobs, L.F.
Title Flexible use of spatial cues in the southern flying squirrel (Glaucomys volans) Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 203-209
Keywords Animals; Male; Orientation; *Sciuridae; *Space Perception; *Spatial Behavior
Abstract Insects, birds, and mammals have been shown capable of encoding spatial information in memory using multiple strategies or frames of reference simultaneously. These strategies include orientation to a goal-specific cue or beacon, to the position of the goal in an array of local landmarks, or to its position in the array of distant landmarks, also known as the global frame of reference. From previous experiments, it appears that birds and mammals that scatter hoard rely primarily on a global frame of reference, but this generalization depends on evidence from only a few species. Here we examined spatial memory in a previously unstudied scatter hoarder, the southern flying squirrel. We dissociated the relative weighting of three potential spatial strategies (beacon, global, or relative array strategy) with three probe tests: transposition of beacon and the rotation or the expansion of the array. The squirrels' choices were consistent with a spatial averaging strategy, where they chose the location dictated by at least two of the three strategies, rather than using a single preferred frame of reference. This adaptive and flexible heuristic has not been previously described in animal orientation studies, yet it may be a common solution to the universal problem of encoding and recalling spatial locations in an ephemeral physical landscape.
Address Department of Psychology, University of California, Berkeley, CA 94720-1650, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17265151 Approved no
Call Number Equine Behaviour @ team @ Serial 2422
Permanent link to this record
 

 
Author (up) Hoogstraal, H.; Mitchell, R.M.
Title Haemaphysalis (Alloceraea) aponommoides Warburton (Ixodoidea: Ixodidae), description of immature stages, hosts, distribution, and ecology in India, Nepal, Sikkim, and China Type Journal Article
Year 1971 Publication The Journal of Parasitology Abbreviated Journal J Parasitol
Volume 57 Issue 3 Pages 635-645
Keywords Altitude; Animals; Artiodactyla; Birds; Buffaloes; Carnivora; Cattle; China; Deer; Dogs; Ecology; Female; Goats; Horses; Humans; India; Insectivora; Larva/anatomy & histology; Male; Mice; Nepal; Rats; Rodentia; Sciuridae; Seasons; Sheep; Tick Infestations/*epidemiology; Ticks/*anatomy & histology/growth & development
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3395 ISBN Medium
Area Expedition Conference
Notes PMID:5090972 Approved no
Call Number Equine Behaviour @ team @ Serial 2730
Permanent link to this record
 

 
Author (up) Tempelis, C.H.; Nelson, R.L.
Title Blood-feeding patterns of midges of the Culicoides variipennis complex in Kern County, California Type Journal Article
Year 1971 Publication Journal of Medical Entomology Abbreviated Journal J Med Entomol
Volume 8 Issue 5 Pages 532-534
Keywords Animals; Behavior, Animal; Cattle; Ceratopogonidae/*immunology; Chickens; Dogs; Ecology; Feeding Behavior; Female; Horses; Humans; Immune Sera; Mice; Precipitin Tests; Rabbits; Rats; Sciuridae; Sheep
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2585 ISBN Medium
Area Expedition Conference
Notes PMID:5160258 Approved no
Call Number Equine Behaviour @ team @ Serial 2723
Permanent link to this record
 

 
Author (up) Vlasak, A.N.
Title Global and local spatial landmarks: their role during foraging by Columbian ground squirrels (Spermophilus columbianus) Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages 71-80
Keywords Animals; Cues; Feeding Behavior/*psychology; Female; *Memory; Mental Recall; Orientation; Sciuridae/*psychology; *Space Perception; *Spatial Behavior
Abstract Locating food and refuge is essential for an animal's survival. However, little is known how mammals navigate under natural conditions and cope with given environmental constraints. In a series of six experiments, I investigated landmark-based navigation in free-ranging Columbian ground squirrels (Spermophilus columbianus). Squirrels were trained individually to find a baited platform within an array of nine identical platforms and artificial landmarks set up on their territories. After animals learned the location of the food platform in the array, the position of the latter with respect to local artificial, local natural, and global landmarks was manipulated, and the animal's ability to find the food platform was tested. When only positions of local artificial landmarks were changed, squirrels located food with high accuracy. When the location of the array relative to global landmarks was altered, food-finding accuracy decreased but remained significant. In the absence of known global landmarks, the presence of a familiar route and natural local landmarks resulted in significant but not highly accurate performance. Squirrels likely relied on multiple types of cues when orienting towards a food platform. Local landmarks were used only as a secondary mechanism of navigation, and were not attended to when a familiar route and known global landmarks were present. This study provided insights into landmark use by a wild mammal in a natural situation, and it demonstrated that an array of platforms can be employed to investigate landmark-based navigation under such conditions.
Address Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA. avlasak@sas.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16163480 Approved no
Call Number Equine Behaviour @ team @ Serial 2483
Permanent link to this record
 

 
Author (up) Yokoyama, S.; Radlwimmer, F.B.
Title The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record