toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Domjan, M. openurl 
  Title Selective suppression of drinking during a limited period following aversive drug treatment in rats Type Journal Article
  Year 1977 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 3 Issue 1 Pages 66-76  
  Keywords Animals; *Avoidance Learning; Awareness; Conditioning, Operant; Dose-Response Relationship, Drug; Drinking Behavior/*drug effects; Lithium/*poisoning; Male; Osmolar Concentration; Rats; Saccharin/administration & dosage; *Taste; Time Factors  
  Abstract Administration of lithium chloride disrupted the intake of flavored solutions but not water in rats. This intake suppression was directly related to the amount of lithium administered (Experiment 1), occurred with both palatable and unpalatable novel saccharin solutions (Experiment 2), but was only observed if subjects were tested starting less than 75 min. after lithium treatment (Experiment 3). Twenty-five daily exposures to saccharin did not attenuate the effect (Experiment 4). However, in saccharin-reared and vinegar-reared rats, lithium did not disrupt consumption of the solutions these subjects had access to throughout life, even though suppressions of intake were observed when these subjects were tested with novel flavors (Experiment 5). The selective disruption of drinking is interpreted as a novelty-dependent sensitization reaction to the discomfort of aversive drug administration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:845544 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2788  
Permanent link to this record
 

 
Author Etienne, A.S.; Maurer, R.; Seguinot, V. openurl 
  Title Path integration in mammals and its interaction with visual landmarks Type Journal Article
  Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 199 Issue Pt 1 Pages 201-209  
  Keywords Animals; Cognition/physiology; Cricetinae; Gerbillinae; Humans; Locomotion/*physiology; Mammals/*physiology; Mesocricetus; Mice; Proprioception/physiology; Rats; Visual Pathways/*physiology; Visual Perception/*physiology  
  Abstract During locomotion, mammals update their position with respect to a fixed point of reference, such as their point of departure, by processing inertial cues, proprioceptive feedback and stored motor commands generated during locomotion. This so-called path integration system (dead reckoning) allows the animal to return to its home, or to a familiar feeding place, even when external cues are absent or novel. However, without the use of external cues, the path integration process leads to rapid accumulation of errors involving both the direction and distance of the goal. Therefore, even nocturnal species such as hamsters and mice rely more on previously learned visual references than on the path integration system when the two types of information are in conflict. Recent studies investigate the extent to which path integration and familiar visual cues cooperate to optimize the navigational performance.  
  Address Laboratoire d'Ethologie, FPSE, Universite de Geneve, Carouge, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:8576691 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2758  
Permanent link to this record
 

 
Author Gallistel, C.R.; Cramer, A.E. openurl 
  Title Computations on metric maps in mammals: getting oriented and choosing a multi-destination route Type Journal Article
  Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 199 Issue Pt 1 Pages 211-217  
  Keywords Animals; Brain/physiology; Cercopithecus aethiops; Cognition/*physiology; Humans; Mammals/*physiology; Movement; Orientation/*physiology; Rats; Space Perception; Visual Pathways/*physiology  
  Abstract The capacity to construct a cognitive map is hypothesized to rest on two foundations: (1) dead reckoning (path integration); (2) the perception of the direction and distance of terrain features relative to the animal. A map may be constructed by combining these two sources of positional information, with the result that the positions of all terrain features are represented in the coordinate framework used for dead reckoning. When animals need to become reoriented in a mapped space, results from rats and human toddlers indicate that they focus exclusively on the shape of the perceived environment, ignoring non-geometric features such as surface colors. As a result, in a rectangular space, they are misoriented half the time even when the two ends of the space differ strikingly in their appearance. In searching for a hidden object after becoming reoriented, both kinds of subjects search on the basis of the object's mapped position in the space rather than on the basis of its relationship to a goal sign (e.g. a distinctive container or nearby marker), even though they have demonstrably noted the relationship between the goal and the goal sign. When choosing a multidestination foraging route, vervet monkeys look at least three destinations ahead, even though they are only capable of keeping a maximum of six destinations in mind at once.  
  Address Department of Psychology, University of California, Los Angeles 90095, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:8576692 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2757  
Permanent link to this record
 

 
Author Dusek, J.A.; Eichenbaum, H. openurl 
  Title The hippocampus and memory for orderly stimulus relations Type Journal Article
  Year 1997 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 94 Issue 13 Pages 7109-7114  
  Keywords Animals; Attention; Discrimination (Psychology)/physiology; Hippocampus/anatomy & histology/*physiology; Male; Memory/*physiology; Rats  
  Abstract Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans.  
  Address Department of Psychology, Boston University, 64 Cummington Street, Boston, MA 02215, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:9192700 Approved no  
  Call Number refbase @ user @ Serial 607  
Permanent link to this record
 

 
Author Blokland, A. openurl 
  Title Reaction time responding in rats Type Journal Article
  Year 1998 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 22 Issue 6 Pages 847-864  
  Keywords Amphetamine/pharmacology; Animals; Behavior, Animal/drug effects/*physiology; Conditioning, Operant/drug effects/*physiology; Dopamine Uptake Inhibitors/pharmacology; Dose-Response Relationship, Drug; Male; Rats; Rats, Inbred Lew; Reaction Time/drug effects/*physiology  
  Abstract The use of reaction time has a great tradition in the field of human information processing research. In animal research the use of reaction time test paradigms is mainly limited to two research fields: the role of the striatum in movement initiation; and aging. It was discussed that reaction time responding can be regarded as “single behavior”, this term was used to indicate that only one behavioral category is measured, allowing a better analysis of brain-behavior relationships. Reaction time studies investigating the role of the striatum in motor functions revealed that the initiation of a behavioral response is dependent on the interaction of different neurotransmitters (viz. dopamine, glutamate, GABA). Studies in which lesions were made in different brain structures suggested that motor initiation is dependent on defined brain structures (e.g. medialldorsal striatum, prefrontal cortex). It was concluded that the use of reaction time measures can indeed be a powerful tool in studying brain-behavior relationships. However, there are some methodological constraints with respect to the assessment of reaction time in rats, as was tried to exemplify by the experiments described in the present paper. On the one hand one should try to control for behavioral characteristics of rats that may affect the validity of the parameter reaction time. On the other hand, the mean value of reaction time should be in the range of what has been reported in man. Although these criteria were not always met in several studies, it was concluded that reaction time can be validly assessed in rats. Finally, it was discussed that the use of reaction time may go beyond studies that investigate the role of the basal ganglia in motor output. Since response latency is a direct measure of information processing this parameter may provide insight into basic elements of cognition. Based on the significance of reaction times in human studies the use of this dependent variable in rats may provide a fruitful approach in studying brain-behavior relationships in cognitive functions.  
  Address Department of Psychology, University of Maastricht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:9809315 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2807  
Permanent link to this record
 

 
Author Crystal, J.D. openurl 
  Title Systematic nonlinearities in the perception of temporal intervals Type Journal Article
  Year 1999 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 25 Issue 1 Pages 3-17  
  Keywords Animals; *Attention; Awareness; Discrimination Learning; Male; Neural Networks (Computer); *Nonlinear Dynamics; Rats; Rats, Sprague-Dawley; Sensory Thresholds; *Time Perception  
  Abstract Rats judged time intervals in a choice procedure in which accuracy was maintained at approximately 75% correct. Sensitivity to time (d') was approximately constant for short durations 2.0-32.0 s with 1.0- or 2.0-s spacing between intervals (n = 5 in each group, Experiment 1), 2.0-50.0 s with 2.0-s spacing (n = 2, Experiment 1), and 0.1-2.0 s with 0.1- or 0.2-s spacing (n = 6 in each group, Experiment 2). However, systematic departures from average sensitivity were observed, with local maxima in sensitivity at approximately 0.3, 1.2, 10.0, 24.0, and 36.0 s. Such systematic departures from an approximately constant d' are predicted by a connectionist theory of time with multiple oscillators and may require a modification of the linear timing hypothesis of scalar timing theory.  
  Address Department of Psychology, Brown University, USA. jdcrys@facstaff.wm.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:9987854 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2776  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print