|   | 
Details
   web
Records
Author Abbruzzetti, S.; Crema, E.; Masino, L.; Vecli, A.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W.
Title Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump Type Journal Article
Year 2000 Publication Biophysical Journal Abbreviated Journal Biophys J
Volume 78 Issue 1 Pages 405-415
Keywords Animals; Apoproteins/*chemistry; Horses; *Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; Protein Conformation; *Protein Folding; Protein Structure, Secondary; Spectrometry, Fluorescence
Abstract Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.
Address Dipartimento di Fisica, Universita di Parma, 43100 Parma, Italia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3495 ISBN Medium
Area Expedition Conference
Notes PMID:10620304 Approved no
Call Number Equine Behaviour @ team @ Serial 3792
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W.
Title Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique Type Journal Article
Year 2001 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 123 Issue 27 Pages 6649-6653
Keywords Animals; *Bacterial Proteins; Cytochrome c Group/*chemistry; Guanidine/*chemistry; Heme/*chemistry; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; *Lasers; Ligands; Protein Folding
Abstract We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.
Address Dipartimento di Fisica, Universita di Parma, Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Medium
Area Expedition Conference
Notes PMID:11439052 Approved no
Call Number Equine Behaviour @ team @ Serial 3788
Permanent link to this record
 

 
Author Ballew, R.M.; Sabelko, J.; Gruebele, M.
Title Direct observation of fast protein folding: the initial collapse of apomyoglobin Type Journal Article
Year 1996 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 93 Issue 12 Pages 5759-5764
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Horses; Kinetics; Muscle, Skeletal/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Infrared; Temperature
Abstract The rapid refolding dynamics of apomyoglobin are followed by a new temperature-jump fluorescence technique on a 15-ns to 0.5-ms time scale in vitro. The apparatus measures the protein-folding history in a single sweep in standard aqueous buffers. The earliest steps during folding to a compact state are observed and are complete in under 20 micros. Experiments on mutants and consideration of steady-state CD and fluorescence spectra indicate that the observed microsecond phase monitors assembly of an A x (H x G) helix subunit. Measurements at different viscosities indicate diffusive behavior even at low viscosities, in agreement with motions of a solvent-exposed protein during the initial collapse.
Address School of Chemical Sciences and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, 61801, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:8650166 Approved no
Call Number Equine Behaviour @ team @ Serial 3798
Permanent link to this record
 

 
Author Chiba, K.; Ikai, A.; Kawamura-Konishi, Y.; Kihara, H.
Title Kinetic study on myoglobin refolding monitored by five optical probe stopped-flow methods Type Journal Article
Year 1994 Publication Proteins Abbreviated Journal Proteins
Volume 19 Issue 2 Pages 110-119
Keywords Animals; Chromatography, Gel; Circular Dichroism; Horses; Kinetics; Metmyoglobin/analogs & derivatives/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Ultraviolet; Urea
Abstract The refolding kinetics of horse cyanometmyoglobin induced by concentration jump of urea was investigated by five optical probe stopped-flow methods: absorption at 422 nm, tryptophyl fluorescence at around 340 nm, circular dichroism (CD) at 222 nm, CD at 260 nm, and CD at 422 nm. In the refolding process, we detected three phases with rate constants of > 1 x 10(2) s-1, (4.5-9.3) s-1, and (2-5) x 10(-3) s-1. In the fastest phase, a substantial amount of secondary structure (approximately 40%) is formed within the dead time of the CD stopped-flow apparatus (10.7 ms). The kinetic intermediate populated in the fastest phase is shown to capture a hemindicyanide, suggesting that a “heme pocket precursor” recognized by hemindicyanide must be constructed within the dead time. In the middle phase, most of secondary and tertiary structures, especially around the captured hemindicyanide, have been constructed. In the slowest phase, we detected a minor structural rearrangement accompanying the ligand-exchange reaction in the fifth coordination of ferric iron. We present a possible model for the refolding process of myoglobin in the presence of the heme group.
Address Laboratory of Biodynamics, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-3585 ISBN Medium
Area Expedition Conference
Notes PMID:8090705 Approved no
Call Number Equine Behaviour @ team @ Serial 3799
Permanent link to this record
 

 
Author Gilmanshin, R.; Callender, R.H.; Dyer, R.B.
Title The core of apomyoglobin E-form folds at the diffusion limit Type Journal Article
Year 1998 Publication Nature Structural Biology Abbreviated Journal Nat Struct Biol
Volume 5 Issue 5 Pages 363-365
Keywords Animals; Apoproteins/*chemistry; Diffusion; Horses; Myoglobin/*chemistry; *Protein Folding; Spectroscopy, Fourier Transform Infrared; Temperature
Abstract The E-form of apomyoglobin has been characterized using infrared and fluorescence spectroscopies, revealing a compact core with native like contacts, most probably consisting of 15-20 residues of the A, G and H helices of apomyoglobin. Fast temperature-jump, time-resolved infrared measurements reveal that the core is formed within 96 micros at 46 degrees C, close to the diffusion limit for loop formation. Remarkably, the folding pathway of the E-form is such that the formation of a limited number of native-like contacts is not rate limiting, or that the contacts form on the same time scale expected for diffusion controlled loop formation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1072-8368 ISBN Medium
Area Expedition Conference
Notes PMID:9586997 Approved no
Call Number Equine Behaviour @ team @ Serial 3795
Permanent link to this record
 

 
Author Gulotta, M.; Gilmanshin, R.; Buscher, T.C.; Callender, R.H.; Dyer, R.B.
Title Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape Type Journal Article
Year 2001 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 40 Issue 17 Pages 5137-5143
Keywords Animals; Apoproteins/*chemistry; Computer Simulation; Horses; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; *Protein Folding; Protein Structure, Secondary; Protein Structure, Tertiary; Spectrometry, Fluorescence/instrumentation/methods; Thermodynamics; Tryptophan/chemistry
Abstract An acid-destabilized form of apomyoglobin, the so-called E state, consists of a set of heterogeneous structures that are all characterized by a stable hydrophobic core composed of 30-40 residues at the intersection of the A, G, and H helices of the protein, with little other secondary structure and no other tertiary structure. Relaxation kinetics studies were carried out to characterize the dynamics of core melting and formation in this protein. The unfolding and/or refolding response is induced by a laser-induced temperature jump between the folded and unfolded forms of E, and structural changes are monitored using the infrared amide I' absorbance at 1648-1651 cm(-1) that reports on the formation of solvent-protected, native-like helix in the core and by fluorescence emission changes from apomyoglobin's Trp14, a measure of burial of the indole group of this residue. The fluorescence kinetics data are monoexponential with a relaxation time of 14 micros. However, infrared kinetics data are best fit to a biexponential function with relaxation times of 14 and 59 micros. These relaxation times are very fast, close to the limits placed on folding reactions by diffusion. The 14 micros relaxation time is weakly temperature dependent and thus represents a pathway that is energetically downhill. The appearance of this relaxation time in both the fluorescence and infrared measurements indicates that this folding event proceeds by a concomitant formation of compact secondary and tertiary structures. The 59 micros relaxation time is much more strongly temperature dependent and has no fluorescence counterpart, indicating an activated process with a large energy barrier wherein nonspecific hydrophobic interactions between helix A and the G and H helices cause some helix burial but Trp14 remains solvent exposed. These results are best fit by a multiple-pathway kinetic model when U collapses to form the various folded core structures of E. Thus, the results suggest very robust dynamics for core formation involving multiple folding pathways and provide significant insight into the primary processes of protein folding.
Address Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:11318635 Approved no
Call Number Equine Behaviour @ team @ Serial 3789
Permanent link to this record
 

 
Author Gulotta, M.; Rogatsky, E.; Callender, R.H.; Dyer, R.B.
Title Primary folding dynamics of sperm whale apomyoglobin: core formation Type Journal Article
Year 2003 Publication Biophysical Journal Abbreviated Journal Biophys J
Volume 84 Issue 3 Pages 1909-1918
Keywords Animals; Apoproteins/*chemistry; Crystallography/*methods; Horses; Myocardium/chemistry; Myoglobin/*chemistry; Protein Conformation; *Protein Folding; Species Specificity; Structure-Activity Relationship; Temperature; Whales
Abstract The structure, thermodynamics, and kinetics of heat-induced unfolding of sperm whale apomyoglobin core formation have been studied. The most rudimentary core is formed at pH(*) 3.0 and up to 60 mM NaCl. Steady state for ultraviolet circular dichroism and fluorescence melting studies indicate that the core in this acid-destabilized state consists of a heterogeneous composition of structures of approximately 26 residues, two-thirds of the number involved for horse heart apomyoglobin under these conditions. Fluorescence temperature-jump relaxation studies show that there is only one process involved in Trp burial. This occurs in 20 micro s for a 7 degrees jump to 52 degrees C, which is close to the limits placed by diffusion on folding reactions. However, infrared temperature jump studies monitoring native helix burial are biexponential with times of 5 micro s and 56 micro s for a similar temperature jump. Both fluorescence and infrared fast phases are energetically favorable but the slow infrared absorbance phase is highly temperature-dependent, indicating a substantial enthalpic barrier for this process. The kinetics are best understood by a multiple-pathway kinetics model. The rapid phases likely represent direct burial of one or both of the Trp residues and parts of the G- and H-helices. We attribute the slow phase to burial and subsequent rearrangement of a misformed core or to a collapse having a high energy barrier wherein both Trps are solvent-exposed.
Address Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA. gulotta@aecom.yu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3495 ISBN Medium
Area Expedition Conference
Notes PMID:12609893 Approved no
Call Number Equine Behaviour @ team @ Serial 3783
Permanent link to this record
 

 
Author Hagen, S.J.; Eaton, W.A.
Title Two-state expansion and collapse of a polypeptide Type Journal Article
Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 301 Issue 4 Pages 1019-1027
Keywords Animals; Computer Simulation; Cytochrome c Group/*chemistry/*metabolism; Horses; Kinetics; Lasers; Models, Chemical; Peptides/*chemistry/*metabolism; Protein Conformation; Protein Denaturation; *Protein Folding; Spectrometry, Fluorescence; Temperature; Thermodynamics
Abstract The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.
Address Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Building 5, Bethesda, MD, 20892-0520, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:10966803 Approved no
Call Number Equine Behaviour @ team @ Serial 3790
Permanent link to this record
 

 
Author Haruta, N.; Kitagawa, T.
Title Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin Type Journal Article
Year 2002 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 41 Issue 21 Pages 6595-6604
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Holoenzymes/chemistry; Horses; Hydrochloric Acid/chemistry; Hydrogen-Ion Concentration; Imidazoles/chemistry; Kinetics; Models, Molecular; Myoglobin/*chemistry; Peptide Fragments/chemistry; *Protein Folding; Protein Structure, Secondary; Spectrum Analysis, Raman/*methods; Tryptophan/*chemistry; Ultraviolet Rays; Whales
Abstract The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.
Address School of Mathematical and Physical Sciences, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:12022863 Approved no
Call Number Equine Behaviour @ team @ Serial 3785
Permanent link to this record
 

 
Author Hirota, S.; Suzuki, M.; Watanabe, Y.
Title Hydrophobic effect of trityrosine on heme ligand exchange during folding of cytochrome c Type Journal Article
Year 2004 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun
Volume 314 Issue 2 Pages 452-458
Keywords Amino Acids/chemistry; Animals; Cytochromes c/*chemistry; Heme/*chemistry; Histidine/chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium/chemistry; Peptides/chemistry; Protein Folding; Spectrophotometry; Spectrum Analysis, Raman; Tyrosine/*analogs & derivatives/*chemistry
Abstract Effect of a hydrophobic peptide on folding of oxidized cytochrome c (cyt c) is studied with trityrosine. Folding of cyt c was initiated by pH jump from 2.3 (acid-unfolded) to 4.2 (folded). The Soret band of the 2-ms transient absorption spectrum during folding decreased its intensity and red-shifted from 397 to 400 nm by interaction with trityrosine, whereas tyrosinol caused no significant effect. The change in the transient absorption spectrum by interaction with trityrosine was similar to that obtained with 100 mM imidazole, which showed that the population of the intermediate His/His coordinated species increased during folding of cyt c by interaction with trityrosine. The absorption change was biphasic, the fast phase (82+/-9s(-1)) corresponding to the transition from the His/H(2)O to the His/Met coordinated species, whereas the slow phase (24+/-3s(-1)) from His/His to His/Met. By addition of trityrosine, the relative ratio of the slow phase increased, due to increase of the His/His species at the initial stage of folding. According to the resonance Raman spectra of cyt c, the high-spin 6-coordinate and low-spin 6-coordinate species were dominated at pH 2.3 and 4.2, respectively, and these species were not affected by addition of trityrosine. These results demonstrated that the His/His species increased by interaction with trityrosine at the initial stage of cyt c folding, whereas the heme coordination structure was not affected by trityrosine when the protein was completely unfolded or folded. Hydrophobic peptides thus may be useful to study the effects of hydrophobic interactions on protein folding.
Address Department of Physical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, 607-8414 Kyoto, Japan. hirota@mb.kyoto-phu.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-291X ISBN Medium
Area Expedition Conference
Notes PMID:14733927 Approved no
Call Number Equine Behaviour @ team @ Serial 3777
Permanent link to this record